• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Haili (Zhang, Haili.) | Wang, Pu (Wang, Pu.) | Gao, Xuejin (Gao, Xuejin.) (学者:高学金) | Qi, Yongsheng (Qi, Yongsheng.) | Gao, Huihui (Gao, Huihui.)

收录:

EI Scopus SCIE

摘要:

T-distributed stochastic neighbor embedding (t-SNE) is an effective visualization method. However, it is non-parametric and cannot be applied to steaming data or online scenarios. Although kernel t-SNE provides an explicit projection from a high-dimensional data space to a low-dimensional feature space, some outliers are not well projected. In this paper, bi-kernel t-SNE is proposed for out-of-sample data visualization. Gaussian kernel matrices of the input and feature spaces are used to approximate the explicit projection. Then principal component analysis is applied to reduce the dimensionality of the feature kernel matrix. Thus, the difference between inliers and outliers is revealed. And any new sample can be well mapped. The performance of the proposed method for out-of-sample projection is tested on several benchmark datasets by comparing it with other state-of-the-art algorithms.

关键词:

T-SNE out-of-sample extension outlier projection dimensionality reduction Data visualization

作者机构:

  • [ 1 ] [Zhang, Haili]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Pu]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Gao, Xuejin]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Gao, Huihui]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Zhang, Haili]Minist Educ, Engn Res Ctr Digital Community, Beijing, Peoples R China
  • [ 6 ] [Wang, Pu]Minist Educ, Engn Res Ctr Digital Community, Beijing, Peoples R China
  • [ 7 ] [Gao, Xuejin]Minist Educ, Engn Res Ctr Digital Community, Beijing, Peoples R China
  • [ 8 ] [Gao, Huihui]Minist Educ, Engn Res Ctr Digital Community, Beijing, Peoples R China
  • [ 9 ] [Zhang, Haili]Beijing Lab Urban Mass Transit, Beijing, Peoples R China
  • [ 10 ] [Wang, Pu]Beijing Lab Urban Mass Transit, Beijing, Peoples R China
  • [ 11 ] [Gao, Xuejin]Beijing Lab Urban Mass Transit, Beijing, Peoples R China
  • [ 12 ] [Gao, Huihui]Beijing Lab Urban Mass Transit, Beijing, Peoples R China
  • [ 13 ] [Qi, Yongsheng]Inner Mongolia Univ Technol, Sch Elect Power, Hohhot, Inner Mongolia, Peoples R China

通讯作者信息:

  • 高学金

    [Gao, Xuejin]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

INFORMATION VISUALIZATION

ISSN: 1473-8716

年份: 2020

期: 1

卷: 20

页码: 20-34

2 . 3 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:132

被引次数:

WoS核心集被引频次: 7

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:415/4940341
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司