• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhao, Xu (Zhao, Xu.) | Wei, Shaojie (Wei, Shaojie.) | Cheng, Weihu (Cheng, Weihu.) (学者:程维虎) | Zhang, Pengyue (Zhang, Pengyue.) | Zhang, Yang (Zhang, Yang.) | Xu, Qi (Xu, Qi.)

收录:

EI Scopus SCIE

摘要:

We investigate point estimation and confidence interval estimation for the heavy-tailed generalized Pareto distribution (GPD) based on the upper record values. When the shape parameter is known, the bias-corrected moments estimators and maximum likelihood estimators (MLE) for the location and scale parameters are derived. However, in practice, the shape parameter is typically unknown. We propose the MLE by a new methodological approach for all three parameters of the heavy-tailed GPD when the shape parameter is unknown. Confidence intervals for the location and scale parameters are constructed by the equal probability density principle. If the shape parameter is known, we can find known distributions of the pivots of the location and scale parameters, but not approximate. While if the shape parameter is unknown, the distributions of the pivots are closed linked to an estimation of the shape parameter. The advantage of our method is that the proposed interval estimation provides the smallest confidence interval, regardless of whether the distribution of the pivot is symmetric. Extensive simulations are used to demonstrate the performance of the point estimation and confidence intervals estimation and show that our method outperforms the traditional technique in most cases.

关键词:

Confidence interval Generalized Pareto distribution (GPD) Upper record values Point estimation Equal probability density principle

作者机构:

  • [ 1 ] [Zhao, Xu]Beijing Univ Technol, Fac Sci, Beijing 100124, Peoples R China
  • [ 2 ] [Wei, Shaojie]Beijing Univ Technol, Fac Sci, Beijing 100124, Peoples R China
  • [ 3 ] [Cheng, Weihu]Beijing Univ Technol, Fac Sci, Beijing 100124, Peoples R China
  • [ 4 ] [Xu, Qi]Beijing Univ Technol, Fac Sci, Beijing 100124, Peoples R China
  • [ 5 ] [Zhang, Pengyue]Ohio State Univ, Coll Med, Dept Biomed Informat, Columbus, OH 43210 USA
  • [ 6 ] [Zhang, Yang]Rutgers State Univ, Dept Econ, New Brunswick, NJ USA
  • [ 7 ] [Zhang, Pengyue]Indiana Univ, Dept Biostat, Indianapolis, IN 46204 USA

通讯作者信息:

  • [Zhao, Xu]Beijing Univ Technol, Fac Sci, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION

ISSN: 0361-0918

年份: 2020

期: 2

卷: 52

页码: 369-391

0 . 9 0 0

JCR@2022

ESI学科: MATHEMATICS;

ESI高被引阀值:46

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:99/3911416
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司