• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Liyuan (Wang, Liyuan.) | Zhang, Jing (Zhang, Jing.) (学者:张菁) | Tian, Qi (Tian, Qi.) | Li, Chenhao (Li, Chenhao.) | Zhuo, Li (Zhuo, Li.)

收录:

EI Scopus SCIE

摘要:

Live video streaming platforms have attracted millions of streamers and daily active users. For profit and popularity accumulation, some streamers mix pornography content into live content to avoid online supervision. Therefore, accurate recognition of porn streamers in live video streaming has become a challenging task. Porn streamers in live video present multimodal characteristics including visual and acoustic content. Therefore, a porn streamer recognition method in live video streaming is proposed that uses attention-gated multimodal deep features. Our contribution includes the following: (1) multimodal deep features, i.e., spatial, motion and audio, are extracted from live video streaming using convolutional neural networks (CNNs), in which the temporal context of multimodal features is obtained with a bi-directional gated recurrent unit (Bi-GRU); (2) the tri-attention gated mechanism is applied to map the associations between different modalities by assigning higher weights to important features for further reduction in the redundancy of multimodal features; (3) porn streamers in live video streaming are recognized via the attention-gated multimodal deep features. Six experiments are conducted on a real-world dataset, and the competitive results demonstrate that our method can effectively recognize porn streamers in live video streaming.

关键词:

Feature extraction Visualization multimodal deep features Redundancy Streaming media Computational modeling Logic gates Live video streaming attention-gated bi-directional gated recurrent unit Task analysis porn streamer recognition

作者机构:

  • [ 1 ] [Wang, Liyuan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Jing]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Chenhao]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Zhuo, Li]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Wang, Liyuan]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 6 ] [Zhang, Jing]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 7 ] [Li, Chenhao]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 8 ] [Zhuo, Li]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 9 ] [Tian, Qi]Univ Texas San Antonio, Dept Comp Sci, San Antonio, TX 78249 USA

通讯作者信息:

  • 张菁

    [Zhang, Jing]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY

ISSN: 1051-8215

年份: 2020

期: 12

卷: 30

页码: 4876-4886

8 . 4 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:115

被引次数:

WoS核心集被引频次: 15

SCOPUS被引频次: 16

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:54/3931433
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司