• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Jing-Wei (Liu, Jing-Wei.) | Zuo, Fang-Ling (Zuo, Fang-Ling.) | Guo, Ying-Xiao (Guo, Ying-Xiao.) | Li, Tian-Yue (Li, Tian-Yue.) | Chen, Jia-Ming (Chen, Jia-Ming.)

收录:

SCIE

摘要:

Convolutional neural network (CNN) is recognized as state of the art of deep learning algorithm, which has a good ability on the image classification and recognition. The problems of CNN are as follows: the precision, accuracy and efficiency of CNN are expected to be improved to satisfy the requirements of high performance. The main work is as follows: Firstly, wavelet convolutional neural network (wCNN) is proposed, where wavelet transform function is added to the convolutional layers of CNN. Secondly, wavelet convolutional wavelet neural network (wCwNN) is proposed, where fully connected neural network (FCNN) of wCNN and CNN are replaced by wavelet neural network (wNN). Thirdly, image classification experiments using CNN, wCNN and wCwNN algorithms, and comparison analysis are implemented with MNIST dataset. The effect of the improved methods are as follows: (1) Both precision and accuracy are improved. (2) The mean square error and the rate of error are reduced. (3) The complexitie of the improved algorithms is increased.

关键词:

Convolutional neural network Deep learning Image analysis Wavelet convolutional neural network Wavelet neural network

作者机构:

  • [ 1 ] [Liu, Jing-Wei]Capital Univ Econ & Business, Informat Coll, Beijing 100070, Peoples R China
  • [ 2 ] [Guo, Ying-Xiao]Capital Univ Econ & Business, Informat Coll, Beijing 100070, Peoples R China
  • [ 3 ] [Li, Tian-Yue]Capital Univ Econ & Business, Informat Coll, Beijing 100070, Peoples R China
  • [ 4 ] [Liu, Jing-Wei]Beijing Univ Technol, Informat Dept, Beijing 100124, Peoples R China
  • [ 5 ] [Chen, Jia-Ming]Beijing Univ Technol, Informat Dept, Beijing 100124, Peoples R China
  • [ 6 ] [Zuo, Fang-Ling]Cent Univ Finance & Econ, Sch Stat & Math, Beijing 100081, Peoples R China

通讯作者信息:

  • [Liu, Jing-Wei]Capital Univ Econ & Business, Informat Coll, Beijing 100070, Peoples R China;;[Liu, Jing-Wei]Beijing Univ Technol, Informat Dept, Beijing 100124, Peoples R China;;[Zuo, Fang-Ling]Cent Univ Finance & Econ, Sch Stat & Math, Beijing 100081, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

APPLIED INTELLIGENCE

ISSN: 0924-669X

年份: 2020

期: 6

卷: 51

页码: 4106-4126

5 . 3 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:28

JCR分区:2

被引次数:

WoS核心集被引频次: 28

SCOPUS被引频次: 31

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 6

归属院系:

在线人数/总访问数:267/3703800
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司