• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Gaolei (Zhang, Gaolei.) | Zhu, Baoqi (Zhu, Baoqi.) | Zou, Jianglin (Zou, Jianglin.) | Wu, Qiang (Wu, Qiang.) | Xiao, Rongshi (Xiao, Rongshi.) (学者:肖荣诗)

收录:

SCIE

摘要:

Severe spattering is one of the common problems during fiber laser keyhole welding. In this study, the correlation between the spatter formation and laser-induced evaporation vapor on the front keyhole wall (FKW) was studied by changing the welding speed during fiber laser keyhole welding. The spatters were mainly generated in front of and behind the keyhole mouth, and the diameters of spatters were mainly between 50-100 mu m at low welding speed, while the diameters of spatter particles were mainly between 100-150 mu m at high welding speed. As the welding speed was increased, the tilt angle of the FKW decreased gradually, and the main spatter generation position shifted from in front of the keyhole mouth to behind the keyhole mouth. In low welding speed, the spatter velocity was higher than that in high welding speed. Further analysis shows that, the recoil pressure of laser-induced evaporation squeezed the molten metal layer in the FKW to generate spatters in front of the keyhole mouth in low welding speed. In high welding speed, the decrease of the molten metal layer in the FKW led to the decrease of spatters in front of the keyhole mouth; however, the laser-induced evaporation vapor from the FKW was more liable to impact the rear keyhole wall to generate spatters behind the keyhole mouth. (C) 2020 The Authors. Published by Elsevier B.V.

关键词:

Evaporation vapor Fiber laser welding FKW Keyhole Spatter

作者机构:

  • [ 1 ] [Zhang, Gaolei]Beijing Univ Technol, Fac Mat & Mfg, High Power & Ultrafast Laser Mfg Lab, Beijing 100124, Peoples R China
  • [ 2 ] [Zhu, Baoqi]Beijing Univ Technol, Fac Mat & Mfg, High Power & Ultrafast Laser Mfg Lab, Beijing 100124, Peoples R China
  • [ 3 ] [Zou, Jianglin]Beijing Univ Technol, Fac Mat & Mfg, High Power & Ultrafast Laser Mfg Lab, Beijing 100124, Peoples R China
  • [ 4 ] [Wu, Qiang]Beijing Univ Technol, Fac Mat & Mfg, High Power & Ultrafast Laser Mfg Lab, Beijing 100124, Peoples R China
  • [ 5 ] [Xiao, Rongshi]Beijing Univ Technol, Fac Mat & Mfg, High Power & Ultrafast Laser Mfg Lab, Beijing 100124, Peoples R China

通讯作者信息:

  • [Zou, Jianglin]Beijing Univ Technol, Fac Mat & Mfg, High Power & Ultrafast Laser Mfg Lab, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T

ISSN: 2238-7854

年份: 2020

期: 6

卷: 9

页码: 15143-15152

6 . 4 0 0

JCR@2022

JCR分区:1

被引次数:

WoS核心集被引频次: 33

SCOPUS被引频次: 39

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

在线人数/总访问数:435/3700004
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司