• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Kuai, Hongzhi (Kuai, Hongzhi.) | Zhong, Ning (Zhong, Ning.)

收录:

SSCI EI Scopus SCIE

摘要:

One of the key ideas in realizing human-like intelligence is to understand information-processing mechanisms in the human brain. Brain Informatics is a rapidly expanding interdisciplinary field to systematically utilize brain-related data, information and knowledge coming from the entire research process for indepth brain investigation. In the past few years, a data-centric conceptual brain model, namely Data-Brain, has been proposed, providing the foundation for the systematic Brain Informatics methodology. The Data Brain model constitutes a conceptual framework and detailed guideline for managing and analyzing brain big data. The development of Data-Brain model also demands the support from advanced technologies. This paper presents an extensible version of the Data-Brain with advanced computing techniques in the connected world. It provides a global understanding of how multidisciplinary techniques work together to tackle brain computing challenges. Particularly, the integrated K-I-D (Knowledge-Information-Data) loop is proposed, constructing a cycle as the thinking space to help pursue the systematic brain investigation, by which the extensible Data-Brain model continuously iterates and evolves through the never-ending learning. Such synergistic evolvement will power future progress for building intelligence systems and applications connected with the study of complex human brain. (c) 2020 Elsevier B.V. All rights reserved.

关键词:

Brain informatics Web intelligence (WI) Intelligence systems Brain computing Artificial intelligence (AI) Data-Brain Brain big data

作者机构:

  • [ 1 ] [Kuai, Hongzhi]Maebashi Inst Technol, Dept Life Sci & Informat, Maebashi, Gumma 3710816, Japan
  • [ 2 ] [Zhong, Ning]Maebashi Inst Technol, Dept Life Sci & Informat, Maebashi, Gumma 3710816, Japan
  • [ 3 ] [Kuai, Hongzhi]Beijing Univ Technol, Int WIC Inst, Beijing 100124, Peoples R China
  • [ 4 ] [Zhong, Ning]Beijing Univ Technol, Int WIC Inst, Beijing 100124, Peoples R China

通讯作者信息:

  • 钟宁

    [Zhong, Ning]Maebashi Inst Technol, Dept Life Sci & Informat, Maebashi, Gumma 3710816, Japan

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

JOURNAL OF COMPUTATIONAL SCIENCE

ISSN: 1877-7503

年份: 2020

卷: 46

3 . 3 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:132

被引次数:

WoS核心集被引频次: 15

SCOPUS被引频次: 16

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:426/4965647
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司