• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ma, Li (Ma, Li.) (学者:李明爱) | Yao, Minghui (Yao, Minghui.) (学者:姚明辉) | Zhang, Wei (Zhang, Wei.) (学者:张伟) | Cao, Dongxing (Cao, Dongxing.) (学者:曹东兴)

收录:

SCIE

摘要:

Due to strong nonlinear, unsteady characteristics and the fluid-structure interaction effect, vibration analysis of blades under the excitation of the airflow is still one of the technical difficulties. In this paper, the accurate subsonic aerodynamic force is obtained through numerical simulation, and the aerodynamic coupling model of the rotary blade is established. The distribution of the aerodynamic force of the compressor blade under the unsteady airflow is focused on. The blade is modeled as presetting a presetting pre-twisted rotary cantilever plate. Dynamic frequencies of the plate, calculated by Chebyshev-Ritz method, are compared with frequencies calculated using the finite element method (FEM). Effects of different parameters on natural frequencies of the rotary plate are discussed. Based on von-Karman nonlinear geometric relation and the first-order shear deformation theory, nonlinear dynamic equations of the pre-twisted rotary plate under the combination of the centrifugal force and the aerodynamic are derived by utilizing Hamilton's principle. Second-order ordinary differential equations are derived by applying the Galerkin method. Analytical solution of the dynamic deformation of the plate is presented and is compared with that produced by FEM. Results indicate the accuracy of the explicit presentation of the aerodynamic of the low-pressure compressor blade. Effects of the rotary speed, the thickness, the pre-twisted angle and the presetting angle on vibration characteristics of the warping blade are studied. Mode shape shift and frequency loci veering are discussed.

关键词:

Chebyshev-Ritz method Dynamic characteristics subsonic aerodynamic force warping of the cross-section

作者机构:

  • [ 1 ] [Ma, Li]Beijing Univ Technol, Coll Mech Engn, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China
  • [ 2 ] [Yao, Minghui]Beijing Univ Technol, Coll Mech Engn, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Wei]Beijing Univ Technol, Coll Mech Engn, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China
  • [ 4 ] [Cao, Dongxing]Beijing Univ Technol, Coll Mech Engn, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China

通讯作者信息:

  • 姚明辉

    [Yao, Minghui]Beijing Univ Technol, Coll Mech Engn, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

INTERNATIONAL JOURNAL OF APPLIED MECHANICS

ISSN: 1758-8251

年份: 2020

期: 8

卷: 12

3 . 5 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:28

JCR分区:2

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

在线人数/总访问数:1719/2931499
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司