• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xu, Xin (Xu, Xin.) | Wang, Ding (Wang, Ding.) (学者:王鼎)

收录:

CPCI-S EI Scopus

摘要:

In this paper, a neural-network-based policy learning method is established to solve robust stabilization for a class of continuous-time nonlinear systems with both internal dynamic uncertainties and input matrix uncertainties. First, the robust stabilization problem is converted to an optimal control problem by choosing an appropriate cast function and proving system stability. Then, in order to solve the Hamilton-Jacobi-Bellman equation, a policy iteration algorithm is employed by constructing and training a critic neural network. The approximate optimal control policy can be obtained by this algorithm, and the solution of the robust stabilization can he derived as well. Finally, a numerical example and an experimental simulation are provided to verify the availability of the proposed strategy.

关键词:

intelligent control Neural critic learning uncertain nonlinear systems robust stabilization adaptive dynamic programming

作者机构:

  • [ 1 ] [Xu, Xin]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Wang, Ding]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Fac Informat Technol, Beijing, Peoples R China

通讯作者信息:

  • [Xu, Xin]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Fac Informat Technol, Beijing, Peoples R China

查看成果更多字段

相关关键词:

来源 :

2020 CHINESE AUTOMATION CONGRESS (CAC 2020)

ISSN: 2688-092X

年份: 2020

页码: 987-992

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:1240/3893425
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司