• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Lu (Liu, Lu.) | Sun, Jingchao (Sun, Jingchao.) | Li, Jianqiang (Li, Jianqiang.) (学者:李建强) | Pei, Yan (Pei, Yan.)

收录:

CPCI-S

摘要:

Recently, the automatic diagnosis of Turner syndrome (TS) has been paid more attention. However, existing methods relied on handcrafted image features. Therefore, we propose a TS classification method using unsupervised feature learning. Specifically, first, the TS facial images are preprocessed including aligning faces, facial area recognition and processing of image intensities. Second, pre-trained convolution filters are obtained by K-means based on image patches from TS facial images, which are used in a convolutional neural network (CNN); then, multiple recursive neural networks are applied to process the feature maps from the CNN to generate image features. Finally, with the extracted features, support vector machine is trained to classify TS facial images. The results demonstrate the proposed method is more effective for the classification of TS facial images, which achieves the highest accuracy of 84.95%.

关键词:

Turner syndrome support vector machine convolutional neural network image processing unsupervised feature learning

作者机构:

  • [ 1 ] [Liu, Lu]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Sun, Jingchao]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Jianqiang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Pei, Yan]Univ Aizu, Comp Sci Div, Aizu Wakamatsu, Fukushima 9658580, Japan

通讯作者信息:

  • [Pei, Yan]Univ Aizu, Comp Sci Div, Aizu Wakamatsu, Fukushima 9658580, Japan

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC)

ISSN: 1062-922X

年份: 2020

页码: 1578-1583

语种: 英文

被引次数:

WoS核心集被引频次: 2

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:1187/4287651
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司