• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Dong, Jingjiao (Dong, Jingjiao.) | Li, Wenjing (Li, Wenjing.) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞)

收录:

CPCI-S EI Scopus

摘要:

In this paper, a fuzzy-membership cerebellar model neural network with differential evolution (DEFM-CMNN) is proposed, which improves the prediction accuracy of the cerebellar model neural network based on fuzzy membership (FM-CMNN) for prediction of time series. Firstly, use the linear quantization function of FM-CMNN input space to quantize the time series into nonlinear state variables. Secondly, the mutation, crossover and selection operations of the differential evolution (DE) algorithm are used to learn the connection weight of the network. Meanwhile, the adaptive mutation operator is introduced to enhance the diversity of individuals in the early stages of evolution. Finally, the effectiveness of the proposed DEFM-CMNN is demonstrated in experiments for time series prediction. The results show that this model has better real-time performance and higher prediction accuracy.

关键词:

prediction fuzzy-membership cerebellar model neural network time series differential evolution algorithm

作者机构:

  • [ 1 ] [Dong, Jingjiao]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Li, Wenjing]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

通讯作者信息:

  • [Dong, Jingjiao]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

2020 CHINESE AUTOMATION CONGRESS (CAC 2020)

ISSN: 2688-092X

年份: 2020

页码: 3103-3110

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:3227/4262144
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司