• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Jinduo (Liu, Jinduo.) | Ji, Junzhong (Ji, Junzhong.) (学者:冀俊忠) | Xun, Guangxu (Xun, Guangxu.) | Yao, Liuyi (Yao, Liuyi.) | Mengdi, Huai (Mengdi, Huai.) | Zhang, Aidong (Zhang, Aidong.)

收录:

CPCI-S

摘要:

Inferring effective connectivity between different brain regions from functional magnetic resonance imaging (fMRI) data is an important advanced study in neuroinformatics in recent years. However, current methods have limited usage in effective connectivity studies due to the high noise and small sample size of fMRI data. In this paper. we propose a novel framework for inferring effective connectivity based on generative adversarial networks (GAN), named as EC-GAN. The proposed framework EC-GAN infers effective connectivity via an adversarial process, in which we simultaneously train two models: a generator and a discriminator. The generator consists of a set of effective connectivity generators based on structural equation models which can generate the fMRI time series of each brain region via effective connectivity. Meanwhile, the discriminator is employed to distinguish between the joint distributions of the real and generated fMRI time series. Experimental results on simulated data show that EC-GAN can better infer effective connectivity compared to other state-of-the-art methods. The real-world experiments indicate that EC-GAN can provide a new and reliable perspective analyzing the effective connectivity of fMRI data.

关键词:

作者机构:

  • [ 1 ] [Liu, Jinduo]Beijing Univ Technol, Fac Informat Technol, Beijing Artificial Intelligence Inst, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 2 ] [Ji, Junzhong]Beijing Univ Technol, Fac Informat Technol, Beijing Artificial Intelligence Inst, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 3 ] [Xun, Guangxu]Univ Virginia, Dept Comp Sci, Charlottesville, VA 22904 USA
  • [ 4 ] [Mengdi, Huai]Univ Virginia, Dept Comp Sci, Charlottesville, VA 22904 USA
  • [ 5 ] [Zhang, Aidong]Univ Virginia, Dept Comp Sci, Charlottesville, VA 22904 USA
  • [ 6 ] [Yao, Liuyi]SUNY Buffalo, Dept Comp Sci & Engn, Buffalo, NY 14260 USA

通讯作者信息:

  • 冀俊忠

    [Ji, Junzhong]Beijing Univ Technol, Fac Informat Technol, Beijing Artificial Intelligence Inst, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE

ISSN: 2159-5399

年份: 2020

卷: 34

页码: 4852-4859

语种: 英文

被引次数:

WoS核心集被引频次: 18

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

在线人数/总访问数:3860/4251622
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司