• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhu Jun (Zhu Jun.) | Wang Lei (Wang Lei.) | Zhang Di (Zhang Di.)

收录:

CPCI-S Scopus

摘要:

This paper proposes a deep learning algorithm to diagnose ship faults in order to improve the accuracy and diagnostic efficiency of ship fault diagnosis. 90% of the large number of unlabeled ship operational data samples are selected for model training, and the remaining 10% is used for model testing. We optimize model parameters and improve the accuracy of the deep learning model for fault diagnosis classification. Hidden layer functions are used to extract multilayer data features and perform feature fusion. Gain values are used to define ship faults, primary faults, secondary faults, and tertiary faults. Finally, we use the soft-max classifier to fault output the fault and get the fault level output. The experimental results on the ship simulation fault dataset show that compared with other traditional algorithms, the accuracy of the fault diagnosis of this method is greatly improved, and the simulation result is 92.5%. Experiments show that the model based on deep learning algorithm for multi-layer feature fusion training can better meet the needs of ship fault diagnosis under complex systems.

关键词:

作者机构:

  • [ 1 ] [Zhu Jun]716 Res Inst China Shipbldg Ind, Nanjing 222002, Jiangsu, Peoples R China
  • [ 2 ] [Zhu Jun]CSIC Informat Technol Co Ltd, Nanjing 222002, Jiangsu, Peoples R China
  • [ 3 ] [Wang Lei]CSIC Informat Technol Co Ltd, Nanjing 222002, Jiangsu, Peoples R China
  • [ 4 ] [Zhang Di]Beijing Univ Technol, Coll Mechatron, Beijing 100041, Peoples R China

通讯作者信息:

  • [Zhu Jun]716 Res Inst China Shipbldg Ind, Nanjing 222002, Jiangsu, Peoples R China;;[Zhu Jun]CSIC Informat Technol Co Ltd, Nanjing 222002, Jiangsu, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

INTERNATIONAL CONFERENCE ON ENERGY, POWER AND MECHANICAL ENGINEERING (EPME2019)

ISSN: 1757-8981

年份: 2020

卷: 793

语种: 英文

被引次数:

WoS核心集被引频次: 3

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:194/4553768
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司