• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Mingliang (Wang, Mingliang.) | Liu, Bo (Liu, Bo.) (学者:刘博) | Li, Jianqiang (Li, Jianqiang.) (学者:李建强) | Li, Yong (Li, Yong.) | Chen, Hongli (Chen, Hongli.) | Zhou, Zhangbing (Zhou, Zhangbing.) | Zhang, Wenbo (Zhang, Wenbo.)

收录:

CPCI-S

摘要:

With the wide use of service-oriented architecture (SOA) in academia and industry, the method of recommending services based on the Quality-of-Service (QoS) has become increasingly important. To obtain the QoS attributes of Web services, many QoS prediction methods have been proposed. However, existing methods rarely consider the QoS variance caused by the location information and the mutual influence between QoS attributes at the same time. To tackle this problem, this study proposes a novel approach called Mul-TSFL (Multivariate Time Series Forecast based on Location), which combines both collaborative filtering method and time series model to achieve more accurate QoS prediction results. The experiments based on the real-world QoS data set WS-Dream have been conducted to verify the effectiveness of the proposed method. Experimental results show that our method outperforms the related arts.

关键词:

multivariate time series Service-oriented architecture Quality of Service

作者机构:

  • [ 1 ] [Wang, Mingliang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Liu, Bo]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Jianqiang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Yong]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Chen, Hongli]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 6 ] [Zhou, Zhangbing]China Univ Geosci Beijing, Sch Informat Engn, Beijing, Peoples R China
  • [ 7 ] [Zhang, Wenbo]Chinese Acad Sci, Inst Software, Beijing 100190, Peoples R China

通讯作者信息:

  • 刘博

    [Liu, Bo]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

PROCEEDINGS OF 2020 IEEE 11TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2020)

ISSN: 2327-0594

年份: 2020

页码: 36-39

语种: 英文

被引次数:

WoS核心集被引频次: 2

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:1042/3881086
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司