• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Bi, Jing (Bi, Jing.) | Yuan, Haitao (Yuan, Haitao.) | Duanmu, Shuaifei (Duanmu, Shuaifei.)

收录:

CPCI-S EI Scopus

摘要:

Wireless capacities and battery energy of smart mobile devices (SMDs) are constrained, and therefore, only limited tasks of applications can be executed in SMDs. To solve this problem, some computation tasks in SMDs can be partially offloaded to edge servers with larger processing capacities. Nonetheless, communication latency is caused for offloaded tasks because of channel bandwidth limits between SMDs and edge servers due to the task offloading. This work designs an energy-efficient task offloading approach to achieve energy consumption minimization for edge servers and SMDs by comprehensively specifying a task offloading ratio, SMDs' processing speeds and transmission power, and channel bandwidth allocation. Specifically, a mixed-integer nonlinear programming problem is formulated for a smart edge provider. Then, it is solved by using a hybrid particle swarm optimization algorithm with genetic operations for obtaining a close-to-optimal task offloading strategy for edge servers and SMDs. It is evaluated by adopting real-life data from Google production cluster, and simulation results demonstrate that it achieves less consumption of energy for the smart edge provider in a faster way compared with its two state-of-the-art benchmark algorithms. Copyright (C) 2020 The Authors.

关键词:

Smart mobile devices task offloading genetic algorithm edge computing energy management particle swarm optimization

作者机构:

  • [ 1 ] [Bi, Jing]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Duanmu, Shuaifei]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Yuan, Haitao]Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China

通讯作者信息:

  • [Bi, Jing]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

IFAC PAPERSONLINE

ISSN: 2405-8963

年份: 2020

期: 5

卷: 53

页码: 19-24

语种: 英文

被引次数:

WoS核心集被引频次: 3

SCOPUS被引频次: 6

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:461/4938117
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司