• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yuan, Jing (Yuan, Jing.) | Bao, Changchun (Bao, Changchun.) (学者:鲍长春)

收录:

CPCI-S

摘要:

In noisy scenes, speech enhancement is an important technology to improve the speech quality. In this paper, a multi-channel speech enhancement algorithm with multiple-target Generative Adversarial Networks (GANs) is proposed. Firstly, using the spatial characteristics of microphone array, the mask of target speech signal is generated by the multiple-target GAN (MT-GAN). Secondly, the mask is estimated based on complex Gaussian mixture model (CGMM), which is combined with the mask predicted by network in an iterative way to obtain a more robust speech enhancement system. Finally, the estimated mask is used to construct beamformer. Thus, the noisy speech is enhanced by the constructed beamformer. The experimental results show that compared with the reference methods, the speech quality and intelligibility of the proposed method are improved effectively.

关键词:

beamforming deep learning generative adversarial networks speech enhancement

作者机构:

  • [ 1 ] [Yuan, Jing]Beijing Univ Technol, Fac Informat Techol, Speech & Audio Signal Proc Lab, Beijing 100124, Peoples R China
  • [ 2 ] [Bao, Changchun]Beijing Univ Technol, Fac Informat Techol, Speech & Audio Signal Proc Lab, Beijing 100124, Peoples R China

通讯作者信息:

  • [Yuan, Jing]Beijing Univ Technol, Fac Informat Techol, Speech & Audio Signal Proc Lab, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

2020 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMMUNICATIONS AND COMPUTING (IEEE ICSPCC 2020)

年份: 2020

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:60/3612164
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司