• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Peng, Xiaohong (Peng, Xiaohong.) | Wang, Sen (Wang, Sen.) | Geng, Shuqin (Geng, Shuqin.) | Zhang, Zhe (Zhang, Zhe.) | Tang, Haonan (Tang, Haonan.) | Wang, Yu (Wang, Yu.) | Wang, Jie (Wang, Jie.) | Li, Xuefeng (Li, Xuefeng.) | Du, Jianing (Du, Jianing.)

收录:

CPCI-S

摘要:

3D object detection based on point cloud data is an essential part of L4 automatic driving. This paper proposes a novel end-to-end trainable deep learning network structure, PPMGNet, which can quickly encode point clouds, obtain the spatial feature of point clouds, predict multiple categories, and perform 3D object detection in real time. A large number of experiments show that in terms of speed and accuracy, PPMGNet's detection performance is very suitable for direct deployment in autonomous driving applications.

关键词:

neural network algorithm point cloud 3D object detection PPMGNet

作者机构:

  • [ 1 ] [Peng, Xiaohong]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Wang, Sen]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Geng, Shuqin]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Zhang, Zhe]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 5 ] [Tang, Haonan]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 6 ] [Wang, Yu]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 7 ] [Wang, Jie]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 8 ] [Li, Xuefeng]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 9 ] [Du, Jianing]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

通讯作者信息:

  • [Wang, Sen]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

2020 IEEE 14TH INTERNATIONAL CONFERENCE ON ANTI-COUNTERFEITING, SECURITY, AND IDENTIFICATION (ASID)

ISSN: 2163-5048

年份: 2020

页码: 53-56

语种: 英文

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:546/4989855
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司