首页>成果

  • 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

[会议论文]

A Self-Organizing Modular Neural Network for Nonlinear System Modeling

分享
编辑 删除 报错

作者:

Meng, Xi (Meng, Xi.) | Quan, Limin (Quan, Limin.) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞)

收录:

CPCI-S

摘要:

In this paper, a self-organizing modular neural network (SO-MNN) is proposed for nonlinear system modeling, in which the modular structure and sub-networks are optimized to improve the modeling accuracy and efficiency. First, the modular structure is constructed by seeking the maximum modularity degree of the whole neural network and the optimal hub center in each sub-network. Simultaneously, the task is divided into several sub-tasks. Then, according to the assigned sub-tasks, subnetworks are constructed based on an incremental radial basis function (RBF) neural network, whose performance can be guaranteed by a structure growing mechanism and an adaptive second-order learning algorithm. Finally, during the testing or application processes, a winner-take-all strategy is used to integrated all the sub-networks. The effectiveness of the proposed methodology is verified by two benchmark problems and a real-world application.

关键词:

modularity optimization Modular neural network nonlinear system modeling radial basis function neural network

作者机构:

  • [ 1 ] [Meng, Xi]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 2 ] [Quan, Limin]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 3 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

通讯作者信息:

  • [Meng, Xi]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

查看成果更多字段

来源 :

2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN)

ISSN: 2161-4393

年份: 2020

语种: 英文

被引次数:

WoS核心集被引频次: 0

近30日浏览量: 1

在线人数/总访问数:238/4535843
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司