• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Tao Qingyang (Tao Qingyang.) | Ren Kun (Ren Kun.) | Feng Bo (Feng Bo.) | Gao Xuejin (Gao Xuejin.) (学者:高学金)

收录:

CPCI-S EI Scopus

摘要:

Low light object detection is a challenging problem in the field of computer vision and multimedia. Most available object detection methods are not accurate enough in low light conditions. The main idea of low light object detection is to add an image enhancement preprocessing module before the detection network. However, the traditional image enhancement algorithms may cause color loss, and the recent deep learning methods tend to take up too many computing resources. These methods are not suitable for low light object detection. We propose an accurate low light object detection method based on pyramid networks. A low-resolution pyramid enhancing light network is adopted to lessen computing and memory consumption. A super-resolution network based on attention mechanism is designed before Efficientdet to improve the detection accuracy. Experiments on the 10K RAW-RGB low light image dataset show the effectiveness of the proposed method.

关键词:

pyramidal network object detection attention guidance super-resolution low light image enhancement

作者机构:

  • [ 1 ] [Tao Qingyang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Ren Kun]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Feng Bo]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Gao Xuejin]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Tao Qingyang]Minist Educ, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China
  • [ 6 ] [Ren Kun]Minist Educ, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China
  • [ 7 ] [Feng Bo]Minist Educ, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China
  • [ 8 ] [Gao Xuejin]Minist Educ, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China
  • [ 9 ] [Tao Qingyang]Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China
  • [ 10 ] [Ren Kun]Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China
  • [ 11 ] [Feng Bo]Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China
  • [ 12 ] [Gao Xuejin]Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China
  • [ 13 ] [Tao Qingyang]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 14 ] [Ren Kun]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 15 ] [Feng Bo]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 16 ] [Gao Xuejin]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

通讯作者信息:

  • [Tao Qingyang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;[Tao Qingyang]Minist Educ, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China;;[Tao Qingyang]Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China;;[Tao Qingyang]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

OPTOELECTRONIC IMAGING AND MULTIMEDIA TECHNOLOGY VII

ISSN: 0277-786X

年份: 2020

卷: 11550

语种: 英文

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 6

归属院系:

在线人数/总访问数:2492/4260773
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司