Indexed by:
Abstract:
In cities, a large amount of municipal solid waste has impacted on the ecological environment significantly. Automatic and robust waste detection and classification is a promising and challenging problem in urban solid waste disposal. The performance of the classical detection and classification method is degraded by some factors, such as various occlusion and scale differences. To enhance the detection model robustness to occlusion and small items, we proposed a robust waste detection method based on a cascade adversarial spatial dropout detection network (Cascade ASDDN). The hard examples with occlusion in pyramid feature space are generated and used to adversarial training a detection network. Hard samples are generated by the spatial dropout module with Gradient-weighted Class Activation Mapping. The experiment verifies the effectiveness of our method on the 2020 Haihua AI challenge waste classification.
Keyword:
Reprint Author's Address:
Email:
Source :
OPTOELECTRONIC IMAGING AND MULTIMEDIA TECHNOLOGY VII
ISSN: 0277-786X
Year: 2020
Volume: 11550
Language: English
Cited Count:
WoS CC Cited Count: 2
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: