• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Luo, Bin (Luo, Bin.) | Lin, Shaofu (Lin, Shaofu.)

收录:

CPCI-S

摘要:

According to the ministry of industry and information technology's 2018 statistical bulletin on the communications industry, the net increase of mobile phone users reached 149 million in the year, bringing the total number to 1.57 billion. How to classify customers according to their value and put forward corresponding business strategies for different value customers has become one of the key issues in the field of telecommunications research. In order to overcome the shortcomings of traditional manual classification, this paper adopts k-means clustering algorithm and SVD algorithm to conduct customer clustering in combination with operator data, and achieve the best classification of customers in the clustering process, and analyzes the behavioral characteristics of various groups. The results show that the algorithm can effectively improve the classification efficiency and accuracy of telecom users and reduce the errors caused by traditional classification. Finally, the conclusion and further work are given.

关键词:

K-means algorithm SVD algorithm data dimension reduction customer value analysis

作者机构:

  • [ 1 ] [Luo, Bin]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Lin, Shaofu]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Lin, Shaofu]Beijing Univ Technol, Beijing Inst Smart City, Beijing, Peoples R China

通讯作者信息:

  • [Lin, Shaofu]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China;;[Lin, Shaofu]Beijing Univ Technol, Beijing Inst Smart City, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

PROCEEDINGS OF 2020 IEEE 5TH INFORMATION TECHNOLOGY AND MECHATRONICS ENGINEERING CONFERENCE (ITOEC 2020)

年份: 2020

页码: 1026-1031

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:546/4955562
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司