• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Qing (Li, Qing.) | Sun, Yanhua (Sun, Yanhua.) | Wang, Qianwen (Wang, Qianwen.) | Meng, Li (Meng, Li.) | Zhang, Yanhua (Zhang, Yanhua.) (学者:张延华)

收录:

CPCI-S

摘要:

Caching popular files at the edge of the network near the users can effectively mitigate the pressure on the backhaul link and reduce the user's transmission delay. The effectiveness of content caching highly depends on the hit rate of the request, so the research of content caching strategy is an important issue. Inspired by reinforcement learning to solve complex control problems, this paper studies the content caching problem that maximizing the use of the cache capacity of the base stations to minimize the average transmission delay of the user request and the energy loss of the network. Because the state of the network is unpredictable and its dimension is huge, the DDPG (Deep Deterministic Policy Gradient) algorithm is used to interact with the environment to learn the optimal cache strategy. By separating the action function network and the value function network, it is possible to optimize each other in the iterative process. Our results show that the proposed framework can improve cache hit ratio and reduce network energy loss.

关键词:

DDPG energy consumption reinforcement learning content caching

作者机构:

  • [ 1 ] [Li, Qing]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Sun, Yanhua]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Wang, Qianwen]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Meng, Li]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 5 ] [Zhang, Yanhua]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

通讯作者信息:

  • [Sun, Yanhua]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

2020 12TH INTERNATIONAL CONFERENCE ON COMMUNICATION SOFTWARE AND NETWORKS (ICCSN 2020)

ISSN: 2159-3566

年份: 2020

页码: 223-227

语种: 英文

被引次数:

WoS核心集被引频次: 6

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:615/4949181
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司