• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Longyang (Wang, Longyang.) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞)

收录:

CPCI-S

摘要:

In order to extract the features of the image more accurately, a deep belief network (DBN) based image feature extraction method is proposed . However, when the deep belief network extracts the features of the image, it is easy to ignore the local texture features of the image.Then the block local local binary mode is introduced to extract the local texture features of the image. At the same time, to improve the slow learning speed of the network, the initial weight of the network is improved.Finally, the proposed network is tested on the ORL image dataset. The results show that the proposed method not only improves the recognition accuracy of the network, but also accelerates the convergence speed of the network to some extent.

关键词:

deep belief network feature extraction local texture features ORL image dataset

作者机构:

  • [ 1 ] [Wang, Longyang]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
  • [ 2 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China

通讯作者信息:

  • [Wang, Longyang]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China

查看成果更多字段

相关关键词:

来源 :

2019 3RD INTERNATIONAL SYMPOSIUM ON AUTONOMOUS SYSTEMS (ISAS 2019)

年份: 2019

页码: 1-6

语种: 英文

被引次数:

WoS核心集被引频次: 5

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:158/3611485
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司