• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Zhuo (Liu, Zhuo.) | Tang, Jian (Tang, Jian.) (学者:汤健) | Yu, Gang (Yu, Gang.) | Sun, YuChen (Sun, YuChen.)

收录:

CPCI-S

摘要:

Difficulty-to-measure process parameter relative to production quality and efficient of complex industrial process is obtained normally by off-line analysis or expert estimation. One of the main reason is that the soft measuring model between multi-source input features and such process parameter is difficulty to be constructed. Aim at the above issue, a new soft measuring method is proposed in this study. At first, linear and nonlinear feature sub-sets are selected by using correlation coefficient and mutual information method. Then, four types of linear and nonlinear candidate sub- models are constructed based on the above feature subsets. At last, optimization and weighting algorithms are used to select and combine the selected ensemble sub-models. Thus, the final selective ensemble learning-based soft measuring model is obtained. The modeling results based on high dimensional mechanical vibration frequency spectrum validate effectiveness of this approach.

关键词:

linear and nonlinear feature subset linear and nonlinear model process parameter selective ensemble learning Soft measuring model

作者机构:

  • [ 1 ] [Liu, Zhuo]Northeaster Univ, State Key Lab Synthet Automat Proc Ind, Shenyang, Peoples R China
  • [ 2 ] [Tang, Jian]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Yu, Gang]Beijing Key Lab Proc Automat Min & Met, State Key Lab, Beijing, Peoples R China
  • [ 4 ] [Sun, YuChen]Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China

通讯作者信息:

  • [Liu, Zhuo]Northeaster Univ, State Key Lab Synthet Automat Proc Ind, Shenyang, Peoples R China

查看成果更多字段

相关关键词:

来源 :

2019 CHINESE AUTOMATION CONGRESS (CAC2019)

ISSN: 2688-092X

年份: 2019

页码: 2488-2493

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:397/3653427
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司