• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

He, Haijun (He, Haijun.) | Tang, Jian (Tang, Jian.) (学者:汤健) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞)

收录:

CPCI-S

摘要:

In order to obtain the accurate dynamic model of the furnace temperature of a solid waste incineration plant, the intelligent algorithm based on weighted adaptive particle swarm optimization algorithm is used for parameter identification. First, the transfer function model of furnace temperature is determined by burning characteristic analysis. Then, the model parameters to be identified are determined. Finally, the parameters of primary air-furnace temperature channel transfer function model are identified by weighted adaptive particle swarm optimization using preprocessed data; In the iteration process, the algorithm can obtain the optimal weight value for each iteration adaptively according to the objective function value and maximum and minimum value of the weight, which improves the identification accuracy of the algorithm. The simulation results show that the established transfer function model can fully describe the dynamic characteristics of this condition, and proves the effectiveness of the weighted adaptive particle swarm optimization algorithm, which provides a basis for subsequent multi-channel model identification of furnace temperature.

关键词:

furnace temperature adaptive particle swarm optimization municipal solid wastes incineration identification

作者机构:

  • [ 1 ] [He, Haijun]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
  • [ 2 ] [Tang, Jian]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
  • [ 3 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China

通讯作者信息:

  • [He, Haijun]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China

查看成果更多字段

相关关键词:

来源 :

2019 CHINESE AUTOMATION CONGRESS (CAC2019)

ISSN: 2688-092X

年份: 2019

页码: 3100-3105

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:1330/3860206
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司