• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xu, Zhe (Xu, Zhe.) | Huo, Qingzhou (Huo, Qingzhou.) | Lv, Yi (Lv, Yi.)

收录:

CPCI-S

摘要:

PM2.5 elements have a great impact on air quality, so it is of great significance to predict PM2.5 concentration for People's Daily life and health. Aiming at the problem of low prediction accuracy of existing models, we propose a spatial-temporal attention neural network (STAN). Firstly, we introduce a spatial attention module to adaptively extract spatial features between monitoring stations. Then, we use a temporal attention to extract features from encoder hidden states across time series. We evaluate the STAN on PM2.5 prediction with data from Beijing observation stations, and the results show that it is superior to ARIMA LSTM and Seq2seq models in predicting PM2.5 concentration.

关键词:

air quality attention mechanism LSTM spatiotemporal correlation time series prediction

作者机构:

  • [ 1 ] [Xu, Zhe]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Huo, Qingzhou]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Lv, Yi]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

通讯作者信息:

  • [Xu, Zhe]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

2019 CHINESE AUTOMATION CONGRESS (CAC2019)

ISSN: 2688-092X

年份: 2019

页码: 3482-3487

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:350/3653699
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司