• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xu, Zhe (Xu, Zhe.) | Niu, Weijia (Niu, Weijia.) | Chen, Muxin (Chen, Muxin.)

收录:

CPCI-S

摘要:

The traditional object detection algorithm can only obtain the horizontal detection frame. In this paper, to solve the problem of large background noise and missing angle information in the detection frame, a bottle target detection model based on SSD (Single Shot multi-frame Detector) algorithm is proposed. The convolutional neural network is used as the feature extraction unit, which realized the gradient bounding box regression by introducing angle prediction. In order to improve the accuracy of the model, the feature pyramid structure is introduced into the feature extraction network, feature pyramid structure enables deep semantic information in the network to be combined with shallow layers. The prior box is determined by K-means clustering algorithm, it is used to make the network model more suitable for the bottle target. The experimental results show that the proposed algorithm is better than the original SSD algorithm, the AP value reaches 90.7%, and the real-time performance of the algorithm is also greatly improved. In summary, the position + size + angle simultaneous detection is more suitable for the target pose recognition application, such as grabbing the bottle in garbage sorting.

关键词:

Focal Loss Garbage sorting K-means Object detection Rotation bounding box

作者机构:

  • [ 1 ] [Xu, Zhe]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Niu, Weijia]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Chen, Muxin]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

通讯作者信息:

  • [Xu, Zhe]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

2019 CHINESE AUTOMATION CONGRESS (CAC2019)

ISSN: 2688-092X

年份: 2019

页码: 3555-3560

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:128/3269186
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司