• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Dong (Li, Dong.) (学者:李冬) | Liu, Bo (Liu, Bo.) (学者:刘博) | Wang, Wen-Qi (Wang, Wen-Qi.) | Zhang, Jie (Zhang, Jie.)

收录:

EI PubMed CSCD

摘要:

This paper investigated domestic sewage with a low C/N ratio. Mature phosphorus removal granules were inoculated to cultivate granules with a simultaneous short-cut nitrification and denitrification function. The characteristics of nitrogen and phosphorus removal of this process were analyzed. Results show that AOB can be enriched by prolonging the sludge age for 30 days with an aeration intensity of 5 L•(h•L)-1and shorter aeration time (140 min), whereas the simultaneous nitrification and denitrification ability could not be improved. The nitrogen loss increased at the aerobic time when aeration intensity was reduced by 3.5 L•(h•L)-1 and aeration time was prolonged by 200 min. The aeration time was further optimized to restrain the transformation of NO2- to NO3-, and finally the effluent of TP-1and TN-1. During the process of the system function transformation from phosphorus removal to nitrogen and phosphorus removal, the phosphorus release decreased, however PAOs still played a dominant role (60%) in the process of internal carbon storage. Batch experiments showed that DPAOs that can utilize nitrite as an electron acceptor accounts for 52.43% in the total PAOS, which alleviated the pressure of the carbon source and improved the simultaneous nitrogen and phosphorus removal. © 2020, Science Press. All right reserved.

关键词:

Denitrification Granulation Nitrification Nitrogen Nitrogen removal Phosphorus Sewage

作者机构:

  • [ 1 ] [Li, Dong]Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Liu, Bo]Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Wang, Wen-Qi]Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Zhang, Jie]Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 5 ] [Zhang, Jie]State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin; 150090, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

Environmental Science

ISSN: 0250-3301

年份: 2020

期: 2

卷: 41

页码: 867-875

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 11

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:856/2995906
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司