• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

He, Xiaobo (He, Xiaobo.) | Zhong, Ning (Zhong, Ning.) | Chen, Jianhui (Chen, Jianhui.)

收录:

CPCI-S EI

摘要:

Topic modeling is the core task of the similarity measurement of short texts and is widely used in the fields of information retrieval and sentiment analysis. Though latent dirichlet allocation provides an approach to model texts by mining the underlying semantic themes of texts. It often leads to a low accuracy of text similarity calculation because of the feature sparseness and poor topic focus of short texts. This paper proposes a similarity measurement method of short texts based on a new topic model, namely Weighted-LDA-TVM. Latent dirichlet allocation is adopted to capture the latent topics of short texts. The topic weights are learned by using particle swarm optimization. Finally, a text vector can be constructed based on the word embeddings of weighted topics for measuring the similarity of short texts. A group of text similarity measurement experiments were performed on biomedical literature abstracts about antidepressant drugs. The experimental results prove that the proposed model has the better distinguish ability and semantic representation ability for the similarity measurement of short texts.

关键词:

PSO LDA Word embedding Topic model Similarity measurement of short texts

作者机构:

  • [ 1 ] [He, Xiaobo]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Zhong, Ning]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Chen, Jianhui]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Chen, Jianhui]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Zhong, Ning]Beijing Int Collaborat Base Brain Informat & Wisd, Beijing 100124, Peoples R China
  • [ 6 ] [Zhong, Ning]Beijing Key Lab MRI & Brain Informat, Beijing 100124, Peoples R China
  • [ 7 ] [Zhong, Ning]Maebashi Inst Technol, Dept Life Sci & Informat, Maebashi, Gumma 3710816, Japan

通讯作者信息:

  • 钟宁

    [Zhong, Ning]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;[Zhong, Ning]Beijing Int Collaborat Base Brain Informat & Wisd, Beijing 100124, Peoples R China;;[Zhong, Ning]Beijing Key Lab MRI & Brain Informat, Beijing 100124, Peoples R China;;[Zhong, Ning]Maebashi Inst Technol, Dept Life Sci & Informat, Maebashi, Gumma 3710816, Japan

查看成果更多字段

相关关键词:

相关文章:

来源 :

BRAIN INFORMATICS

ISSN: 0302-9743

年份: 2019

卷: 11976

页码: 212-219

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:322/4969976
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司