• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Sun, Shujiao (Sun, Shujiao.) | Jiang, Bonan (Jiang, Bonan.) | Zheng, Yushan (Zheng, Yushan.) | Xie, Fengying (Xie, Fengying.)

收录:

CPCI-S EI Scopus

摘要:

Automatic analysis of histopathological whole slide images (WSIs) is a challenging task. In this paper, we designed two deep learning structures based on a fully convolutional network (FCN) and a convolutional neural network (CNN), to achieve the segmentation of carcinoma regions from WSIs. FCN is developed for segmentation problems and CNN focuses on classification. We designed experiments to compare the performances of the two methods. The results demonstrated that CNN performs as well as FCN when applied to WSIs in high resolution. Furthermore, to leverage the advantages of CNN and FCN, we integrate the two methods to obtain a complete framework for lung cancer segmentation. The proposed methods were evaluated on the ACDC-LungHP dataset. The final dice coefficient for cancerous region segmentation is 0.770.

关键词:

CNN Computational pathology FCN Lung cancer Image segmentation

作者机构:

  • [ 1 ] [Sun, Shujiao]Beihang Univ, Image Proc Ctr, Sch Astronaut, Beijing 100191, Peoples R China
  • [ 2 ] [Zheng, Yushan]Beihang Univ, Image Proc Ctr, Sch Astronaut, Beijing 100191, Peoples R China
  • [ 3 ] [Xie, Fengying]Beihang Univ, Image Proc Ctr, Sch Astronaut, Beijing 100191, Peoples R China
  • [ 4 ] [Sun, Shujiao]Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Beijing 100191, Peoples R China
  • [ 5 ] [Zheng, Yushan]Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Beijing 100191, Peoples R China
  • [ 6 ] [Xie, Fengying]Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Beijing 100191, Peoples R China
  • [ 7 ] [Jiang, Bonan]Beijing Univ Technol, Beijing Doblin Int Coll, Beijing 100124, Peoples R China

通讯作者信息:

  • [Zheng, Yushan]Beihang Univ, Image Proc Ctr, Sch Astronaut, Beijing 100191, Peoples R China;;[Zheng, Yushan]Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Beijing 100191, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

IMAGE AND GRAPHICS, ICIG 2019, PT II

ISSN: 0302-9743

年份: 2019

卷: 11902

页码: 558-567

语种: 英文

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:570/4961254
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司