• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chen, Shen (Chen, Shen.) | Ma, Wei (Ma, Wei.) | Qin, Yue (Qin, Yue.)

收录:

CPCI-S EI Scopus

摘要:

CNN has proved powerful in many tasks, including single image inpainting. The paper presents an end-to-end network for stereoscopic image inpainting. The proposed network is composed of two encoders for independent feature extraction of a pair of stereo images with missing regions, a feature fusion module for stereo coherent structure prediction, and two decoders to generate a pair of completed images. In order to train the model, besides a reconstruction and an adversarial loss for content recovery, a local consistency loss is defined to constrain stereo coherent detail prediction. Moreover, we present a transfer-learning based training strategy to solve the issue of stereoscopic data scarcity. To the best of our knowledge, we are the first to solve the stereoscopic inpainting problem in the framework of CNN. Compared to traditional stereoscopic inpainting and available CNN-based single image inpainting (repairing stereo views one by one) methods, our network generates results of higher image quality and stereo consistency.

关键词:

Stereoscopic vision Image inpainting Convolutional Neural Network

作者机构:

  • [ 1 ] [Chen, Shen]Beijing Univ Technol, 100 Pingleyuan, Beijing, Peoples R China
  • [ 2 ] [Ma, Wei]Beijing Univ Technol, 100 Pingleyuan, Beijing, Peoples R China
  • [ 3 ] [Qin, Yue]Beijing Univ Technol, 100 Pingleyuan, Beijing, Peoples R China

通讯作者信息:

  • [Chen, Shen]Beijing Univ Technol, 100 Pingleyuan, Beijing, Peoples R China;;[Ma, Wei]Beijing Univ Technol, 100 Pingleyuan, Beijing, Peoples R China;;[Qin, Yue]Beijing Univ Technol, 100 Pingleyuan, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

IMAGE AND GRAPHICS, ICIG 2019, PT III

ISSN: 0302-9743

年份: 2019

卷: 11903

页码: 95-106

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:568/4949879
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司