• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jia, Ting (Jia, Ting.) | Jian, Meng (Jian, Meng.) | Wu, Lifang (Wu, Lifang.) (学者:毋立芳) | He, Yonghao (He, Yonghao.)

收录:

CPCI-S

摘要:

With the rapid development of social networking, user requirement suffers more and more from intention gap of user interest and semantic gap of multimedia. It becomes urgent to investigate personalized recommendation. In this paper, we propose modular manifold ranking (MMR) for image recommendation. MMR attempts to construct global image manifold over CNN based features extraction to involve content relations in recommendation. Specifically, manifold modularity is introduced to perform a flexible manifold learning for large scale database in a manner of manifold decomposition. MMR employed manifold ranking to propagate users' interests to the whole image manifold and estimate user-image correlation for image recommendation. The experimental analysis illustrates that the proposed method successfully extends the scalability of manifold ranking and achieves good performance in social image recommendation compared with its competitors.

关键词:

user interest modularity Manifold ranking social networking image recommendation

作者机构:

  • [ 1 ] [Jia, Ting]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Jian, Meng]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Wu, Lifang]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [He, Yonghao]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

通讯作者信息:

  • [Jian, Meng]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

2018 IEEE FOURTH INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM)

年份: 2018

语种: 英文

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:1536/3893742
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司