收录:
摘要:
由于传统RRT(rapidly-exploring random trees)路径规划算法固有的盲目探索的问题,机器人到达目标点时除起始点扩展到目标点的路径之外还会生成其他与结果无关的分支路径与节点,为使这些分支路径得到利用并且减少探索的盲目性,提出基于信息增益与RRT思想相结合的机器人环境探索策略.该方法对未知环境中的节点进行信息估计,选取具有最大信息增益的节点作为采样节点,且每次都会生成最大信息增益的新节点进行扩展.该策略使机器人能完成对未知环境的探索,还可以降低传统RRT算法固有的盲目性.仿真实验结果表明,所提出方法能够有效快速地帮助机器人探索未知环境,实现环境探索.
关键词:
通讯作者信息:
电子邮件地址: