• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

高学金 (高学金.) (学者:高学金) | 刘爽爽 (刘爽爽.) | 高慧慧 (高慧慧.)

收录:

EI Scopus CSCD

摘要:

针对传统故障监测方法难以提取数据深层特征的问题,提出一种基于多变量深度卷积神经网络的故障监测方法,以提高监测精度。为捕获过程动态性,采用滑动窗技术对过程变量序列进行分割,利用希尔伯特-黄变换对分割后的序列进行分解,得到时频图,有效挖掘变量序列在幅值、频率、相位上的异常变化信息;以时频图为输入,基于深度卷积神经网络构建故障监测模型,提取故障信息深层特征,提高监测精度;利用青霉素发酵过程仿真数据和大肠杆菌生产数据进行实验验证,结果表明所提方法监测精度分别高达95%和93%以上。

关键词:

故障监测 发酵过程 希尔伯特-黄变换 卷积神经网络 特征提取

作者机构:

  • [ 1 ] 北京工业大学信息学部
  • [ 2 ] 数字社区教育部工程研究中心
  • [ 3 ] 城市轨道交通北京实验室
  • [ 4 ] 计算智能与智能系统北京市重点实验室

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

高校化学工程学报

年份: 2020

期: 06

卷: 34

页码: 1511-1519

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:1173/3893300
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司