• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Zhen (Wang, Zhen.) | Zhong, Zi-Lan (Zhong, Zi-Lan.) | Zhao, Mi (Zhao, Mi.) (学者:赵密) | Du, Xiu-Li (Du, Xiu-Li.) (学者:杜修力) | Huang, Jing-Qi (Huang, Jing-Qi.)

收录:

EI CSCD

摘要:

The seismic damage of mountain tunnels is closely associated with the movement of active faults. Seismic design of tunnels crossing active faults is one of the great challenges nowadays. Based on the engineering prototype of the Xianglu mountain tunnel, the water diversion project in central Yunnan Province, a numerical method to simulate the propagation of normal fault rupture is proposed using the finite element method incorporated with the cohesive interface model in fracture mechanics. The proposed method is verified against the post-earthquake reconnaissance and experimental results using the three-dimensional free-field model. It is used to simulate a tunnel crossing a normal fault, and the effects of fault displacement and dip angle on the response of the tunnel linings are discussed. Besides, the damage indices and safety assessment criteria are introduced to preliminarily evaluate the damage of the tunnel linings subjected to fault movement. The results show that the mechanisms of surface rupture exhibit the forms of folding or fault scarps under normal faulting. The axial tensile strain and hoop shear strain of the tunnel linings reach the maximum at the position where they intersect the fault slip surface. The seismic damage state of tunnel along the longitudinal direction is significantly affected by the fault displacement and dip angle. The length of the tunnel linings in a severely damaged and completely damaged state is significantly reduced with the increase of the dip angle. Dip angles of 50° to 70° are more detrimental to structural safety. © 2020, Editorial Office of Chinese Journal of Geotechnical Engineering. All right reserved.

关键词:

Damage detection Fault slips Flood control Fracture mechanics Geotechnical engineering Landforms Numerical methods Railroad tunnels Safety engineering Seismic design Seismology Shear strain Tensile strain Tunnel linings

作者机构:

  • [ 1 ] [Wang, Zhen]Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Zhong, Zi-Lan]Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Zhao, Mi]Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Du, Xiu-Li]Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing; 100124, China
  • [ 5 ] [Huang, Jing-Qi]School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing; 100083, China

通讯作者信息:

  • 赵密

    [zhao, mi]key laboratory of urban security and disaster engineering of ministry of education, beijing university of technology, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

Chinese Journal of Geotechnical Engineering

ISSN: 1000-4548

年份: 2020

期: 10

卷: 42

页码: 1876-1884

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 11

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 5

在线人数/总访问数:190/2893874
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司