• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ma, Guowei (Ma, Guowei.) | Li, Yanfeng (Li, Yanfeng.) (学者:李炎锋) | Wang, Li (Wang, Li.) | Zhang, Junfei (Zhang, Junfei.) | Li, Zhijian (Li, Zhijian.)

收录:

EI SCIE

摘要:

This study is a pilot exploration to develop rigorous, green, intellectualized approach for optimal controlling the 3D concrete printing. The mechanical performances of 3D printed samples during super-early age, early age, and hardened state are tested and monitored using piezoelectric zirconate titanate (PZT) patches. EMI sensing technique is applied to quantify stiffness gain of printed concrete to evaluate the structural build-up behaviour by establishing the instant correlation between the stiffness of concrete and the EMI signatures. An optimization method for printing process based on EMI detection is proposed. In this way, the PZT signals can be feedback to the digital control system of printer in real time to adjust the printing setting. Instant intellectualization for the 3D printing technique is then realized and the buildability of the printed concrete is expected to be improved. The different early age properties of both printed and casted composites are elaborated. Thereafter, changes of frequency and amplitude in the conductance spectrum acquired by mounted PZT patches are employed to characterize and quantify the mechanical behaviours of the 3D printed samples exposed to orthogonal loadings, which contribute to the understanding of damage accumulation and failure process of concrete materials. (C) 2020 Elsevier Ltd. All rights reserved.

关键词:

3D concrete printing Damage assessment Mechanical anisotropy Real-time intellectualization Smart piezoelectric sensor Stiffness development

作者机构:

  • [ 1 ] [Ma, Guowei]Hebei Univ Technol, Sch Civil & Transportat Engn, 5340 Xiping Rd, Tianjin 300401, Peoples R China
  • [ 2 ] [Li, Yanfeng]Hebei Univ Technol, Sch Civil & Transportat Engn, 5340 Xiping Rd, Tianjin 300401, Peoples R China
  • [ 3 ] [Wang, Li]Hebei Univ Technol, Sch Civil & Transportat Engn, 5340 Xiping Rd, Tianjin 300401, Peoples R China
  • [ 4 ] [Zhang, Junfei]Univ Western Australia, Sch Civil Environm & Min Engn, Crawley, WA 6009, Australia
  • [ 5 ] [Li, Zhijian]Beijing Univ Technol, Coll Architecture & Civil Engn, Pingleyuan 100, Beijing 100084, Peoples R China

通讯作者信息:

  • [Wang, Li]Hebei Univ Technol, Sch Civil & Transportat Engn, 5340 Xiping Rd, Tianjin 300401, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

CONSTRUCTION AND BUILDING MATERIALS

ISSN: 0950-0618

年份: 2020

卷: 241

7 . 4 0 0

JCR@2022

ESI学科: MATERIALS SCIENCE;

ESI高被引阀值:37

JCR分区:1

被引次数:

WoS核心集被引频次: 52

SCOPUS被引频次: 56

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:5592/2950209
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司