• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Hu, Guangwu (Hu, Guangwu.) | Li, Qing (Li, Qing.) | Ai, Shuo (Ai, Shuo.) | Chen, Tan (Chen, Tan.) | Duan, Jingpu (Duan, Jingpu.) | Wu, Yu (Wu, Yu.)

收录:

EI Scopus SCIE

摘要:

Network Functions Virtualization (NFV) is a promising technology to provide packet processing services. However, dynamic capacity provisioning to meet different tenants’ time-varying demands under service-level agreements is still a challenge for NFV service providers. The existing works generally perform the scaling-in/out actions for separate service chains and cannot promise a guarantee for the total processing time. Therefore, we propose Palm, a proactive auto-scaling framework to minimize the resource consumption while enforcing latency guarantees for multiple intersecting service chains. We first leverage the classed Jackson network model to analyze the packet processing latency. Then, a log-linear Poisson auto-regression method is employed to predict each tenant's packet arrival rate. Based on the prediction result, we perform the capacity adjustment actions and update the flow forwarding policies. We formulate the capacity provisioning task as a nonlinear integer programming problem and propose an evolution based algorithm to tackle it. To simplify the auto-scaling problem, we develop an adaptive algorithm to divide the NFV cloud into persistent and temporary layers. Our comprehensive experiments show that Palm achieves a steady low-latency performance at a lower cost compared with the state-of-the-art dynamic scaling strategies. © 2020

关键词:

Regression analysis Network function virtualization Integer programming Adaptive algorithms

作者机构:

  • [ 1 ] [Hu, Guangwu]School of Computer Science, Shenzhen Institute of Information Technology, Shenzhen, China
  • [ 2 ] [Li, Qing]Southern University of Science and Technology, Shenzhen, China
  • [ 3 ] [Li, Qing]Peng Cheng Laboratory, Shenzhen, China
  • [ 4 ] [Ai, Shuo]Tsinghua Shenzhen International Graduate School, Shenzhen, China
  • [ 5 ] [Chen, Tan]Faculty of Information and Technology, Beijing University of Technology, Beijing, China
  • [ 6 ] [Duan, Jingpu]Southern University of Science and Technology, Shenzhen, China
  • [ 7 ] [Wu, Yu]Southern University of Science and Technology, Shenzhen, China

通讯作者信息:

  • [li, qing]peng cheng laboratory, shenzhen, china;;[li, qing]southern university of science and technology, shenzhen, china

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

Computer Networks

ISSN: 1389-1286

年份: 2020

卷: 181

5 . 6 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:132

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 6

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:1555/4278344
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司