• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xu, Yonggang (Xu, Yonggang.) | Li, Shuang (Li, Shuang.) | Tian, Weikang (Tian, Weikang.) | Yu, Jun (Yu, Jun.) | Zhang, Kun (Zhang, Kun.)

收录:

EI SCIE

摘要:

Rolling bearings are one of the most important components in rotating machinery. It is important to accurately determine the center frequency and bandwidth of the resonant frequency band for bearing fault diagnosis. There are two problems with the existing methods for extracting bearing fault characteristics. First, due to the unreasonable spectrum segmentation, the determined resonant frequency band contains only partial fault information or hidden irrelevant information. Finally, because of the interference of the accidental impact, the correct fault characteristic information cannot be extracted. To solve the above problems, a time-frequency domain scanning empirical spectral negentropy method (T-FSESNE) based on spectral negentropy (NE) and empirical wavelet transform (EWT) is proposed in this paper. The signal is filtered twice by EWT filter: Firstly, the central frequencies of all resonance side bands are determined by using frequency-domain spectral negentropy, and then the optimal bandwidth of the resonance side bands is determined by using time-domain spectral negentropy. According to the determined center frequency and bandwidth, each component is extracted and analyzed by envelope spectrum to realize bearing fault diagnosis. The validity of the extracted methods is verified by bearing fault simulation and experimental signals. The results show that not only the interference of accidental impact can be effectively avoided but also the optimal center frequency and bandwidth can be determined quickly and accurately. More importantly, this method can determine the position of multiple resonance sidebands, which is more suitable for the analysis of complex fault vibration signals in rolling bearings.

关键词:

Empirical wavelet transform Fault diagnosis Filter Rolling bearing Spectral negentropy

作者机构:

  • [ 1 ] [Xu, Yonggang]Beijing Univ Technol, Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Shuang]Beijing Univ Technol, Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Tian, Weikang]Beijing Univ Technol, Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Zhang, Kun]Beijing Univ Technol, Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Yu, Jun]Harbin Inst Technol, Harbin 150080, Heilongjiang, Peoples R China

通讯作者信息:

  • [Xu, Yonggang]Beijing Univ Technol, Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY

ISSN: 0268-3768

年份: 2020

期: 4

卷: 108

页码: 1249-1264

3 . 4 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:28

JCR分区:2

被引次数:

WoS核心集被引频次: 5

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:1664/2914433
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司