• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Sun, Xiuping (Sun, Xiuping.) | Qi, Haiqiang (Qi, Haiqiang.) | Sun, Zhirong (Sun, Zhirong.) (学者:孙治荣)

收录:

EI Scopus SCIE

摘要:

Bifunctional cathodes have attracted widespread interest in the heterogeneous electro-Fenton (hetero-EF) process. In this study, the bifunctional composite cathode co-modified with N-doped carbon CoFe alloy (CoFe@NC) and carbon nanotubes (CNTs), designated as CoFe@NC-CNTs/CNTs/NF, integrating hydrogen peroxide (H2O2) synthesis and catalysis, was prepared for efficient degradation of atrazine (ATZ) under the near-neutral condition (pHi = 5.9). The morphology properties, crystal structure, microstructures, and elemental composition were determined. The influences of current density, initial pH value, different anions, and water matrix on the removal of ATZ were systematically studied. In the hetero-EF process, high removal efficiencies of ATZ can be achieved over the broad pH range (3-9) under the current density of 4.5 mA cm-2. The removal efficiency of ATZ remained at 90.2 +/- 0.3% after 8 cycles under the near-neutral condition (pHi = 5.9). Radical quenching tests and EPR spectra have verified that both free radical pathways such as superoxide anion (O-2(center dot-)) and hydroxyl radical ((OH)-O-center dot) and non-radical pathway such as singlet oxygen (O-1(2)) contributed to ATZ removal. The degradation pathways and catalytic mechanism were proposed. Toxicity evaluation and Escherichia coli growth test showed that the toxicity gradually decreased during the degradation process. This work provided a new thought for developing an efficient and stable bifunctional cathode to construct an in-situ hetero-EF system for pollutants removal over the wide pH range.

关键词:

Singlet oxygen Atrazine Heterogeneous electro-Fenton CoFe alloy Broad pH

作者机构:

  • [ 1 ] [Sun, Xiuping]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 2 ] [Qi, Haiqiang]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 3 ] [Sun, Zhirong]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China

通讯作者信息:

  • 孙治荣

    [Sun, Zhirong]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

CHEMOSPHERE

ISSN: 0045-6535

年份: 2022

卷: 286

8 . 8

JCR@2022

8 . 8 0 0

JCR@2022

ESI学科: ENVIRONMENT/ECOLOGY;

ESI高被引阀值:47

JCR分区:1

中科院分区:2

被引次数:

WoS核心集被引频次: 32

SCOPUS被引频次: 39

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:156/3906154
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司