• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chen, Hao (Chen, Hao.) | Guo, Hang (Guo, Hang.) (学者:郭航) | Ye, Fang (Ye, Fang.) | Fang, Chong (Fang, Chong.)

收录:

SCIE

摘要:

Orientated-type flow channels of proton exchange membrane fuel cells having baffles increase the cell performance, however, the higher power loss accounted by baffles, is a non-ignorable disadvantage. Previous literature proves that the baffles in channels cause the increase in power losses, while how the baffles affect the power losses, including the frictional losses and local losses, are still not analyzed before. Therefore, in this paper, a two-dimensional model is developed to study the friction loss and local loss in the flow channels with baffles. The numerical model, which couples the non-Darcy flow effect, is validated by comparing with self-conducted experimental results. Experimental and simulation results reveal that: orientated-type flow channels facilitate enhance the power output, and with the enlargement of baffles, the performance is further enhanced. In addition, the frictional losses and local losses in the orientated-type flow channels are comparatively studied by a numerical approach for the first time. It is found that using the materials with low surface roughness can decrease the friction loss; and avoiding sudden expanded segments at leeward sides of baffles can reduce the local loss. The experimental results and simulation results can further help improve the flow channel design. (c) 2021 Elsevier Ltd. All rights reserved.

关键词:

Flow channel design Frictional loss Local loss Orientated-type flow channel Proton exchange membrane fuel cell

作者机构:

  • [ 1 ] [Guo, Hang]Beijing Univ Technol, Coll Energy & Power Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing 100124, Peoples R China
  • [ 2 ] [Guo, Hang]Beijing Univ Technol, Beijing Key Lab Heat Transfer & Energy Convers, Coll Energy & Power Engn, Beijing 100124, Peoples R China

通讯作者信息:

  • 郭航

    [Guo, Hang]Beijing Univ Technol, Coll Energy & Power Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

RENEWABLE ENERGY

ISSN: 0960-1481

年份: 2022

卷: 181

页码: 1338-1352

8 . 7

JCR@2022

8 . 7 0 0

JCR@2022

ESI学科: ENGINEERING;

被引次数:

WoS核心集被引频次: 7

SCOPUS被引频次: 7

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:1134/2990508
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司