• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Fan, Zhiwei (Fan, Zhiwei.) | Zeng, Wei (Zeng, Wei.) (学者:曾薇) | Meng, Qingan (Meng, Qingan.) | Liu, Hong (Liu, Hong.) | Liu, Hongjun (Liu, Hongjun.) | Peng, Yongzhen (Peng, Yongzhen.) (学者:彭永臻)

收录:

SCIE

摘要:

Achieving enhanced biological phosphorus removal dominated by Tetrasphaera utilizing waste activated sludge (WAS) as carbon source could solve the problems of insufficient carbon source and excessive discharge of WAS in biological phosphorus removal. Up to now, the sludge reduction ability of Tetrasphaera remained largely unknown. Furthermore, the difference between traditional sludge fermentation and sludge fermentation dominated by Tetrasphaera was still unclear. In this study, two different sequencing batch reactors (SBRs) were operated. WAS fromSBR-parent was utilized as sole carbon source to enrich Tetrasphaera with the relative abundance of 91.9% in SBR-Tetrasphaera. PO43--P removal and sludge reduction could simultaneously be achieved. The effluent concentration of PO43 --P was 0, and the sludge reduction efficiency reached about 44.14% without pretreatment of sludge. Cell integrity detected by flow cytometry, the increase of DNA concentration in the sludge supernatant and decrease of particle size of activated sludge indicated that cell death and lysis occurred in sludge reduction dominated by Tetrasphaera. Stable structure of activated sludge was also damaged in this process, which led to the sludge reduction. By analyzing the excitation-emission matrix spectra of extracellular polymeric substances and the changes of carbohydrate and protein concentration, this study proved that slowly biodegradable organics (e.g., soluble microbial byproduct, tyrosine and tryptophan aromatic protein) could be better hydrolyzed and acidized to volatile fatty acids (VFAs) in sludge fermentation dominated by Tetrasphaera than traditional sludge fermentation, which provided carbon source for biological nutrients removal and saved operation cost in wastewater treatment. (C) 2021 Elsevier B.V. All rights reserved.

关键词:

Biological phosphorus removal Enriched culture Fermentation Polyphosphate accumulating organisms

作者机构:

  • [ 1 ] [Fan, Zhiwei]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Dept Environm Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Zeng, Wei]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Dept Environm Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Meng, Qingan]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Dept Environm Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Liu, Hong]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Dept Environm Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Liu, Hongjun]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Dept Environm Engn, Beijing 100124, Peoples R China
  • [ 6 ] [Peng, Yongzhen]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Dept Environm Engn, Beijing 100124, Peoples R China

通讯作者信息:

  • 曾薇

    [Zeng, Wei]Beijing Univ Technol, Dept Environm Engn, Pingleyuan 100, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

SCIENCE OF THE TOTAL ENVIRONMENT

ISSN: 0048-9697

年份: 2021

卷: 799

9 . 8 0 0

JCR@2022

ESI学科: ENVIRONMENT/ECOLOGY;

ESI高被引阀值:7

被引次数:

WoS核心集被引频次: 22

SCOPUS被引频次: 23

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:959/2908642
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司