• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chen, Jinghong (Chen, Jinghong.) | Zhao, Chong (Zhao, Chong.) | Lu, Hao (Lu, Hao.) | Li, Yanan (Li, Yanan.) | Liu, Xuemei (Liu, Xuemei.) | Wang, Haibin (Wang, Haibin.) | Nie, Zuoren (Nie, Zuoren.) (学者:聂祚仁) | Song, Xiaoyan (Song, Xiaoyan.) (学者:宋晓艳)

收录:

SCIE

摘要:

The distribution of the residual thermal stress (RTS) in the as-sintered cermets and its interactions with the applied stress were studied by simulations and experiments, using the WC-Co cemented carbides as examples. The influences of grain size, grain morphology and phase configuration on the stress state and mechanical behavior were quantified in the model, which was constructed from real multi-phased microstructures. The results indicate that the volume-averaged RTS is a power function of the mean WC grain size. There is a high level of compressive stress in the WC regions near the triple junctions of adjacent WC grains and Co binder, and a high level of tensile stress inside the Co phase in the vicinity of WC/Co phase boundaries. In the cermets with RTS, the metallic binder exhibits a gradually increasing strain response rate under the external loading. It is found that a smaller WC grain size, a lower proportion of Co thin-layers, and a higher fraction of triple junctions of adjacent WC grains and Co phase, are beneficial to have less stress concentration and simultaneously high strength and fracture toughness of the cermets. This study provides a new approach to characterize stresses in the multi-phased materials and a strategy to adjust stress distribution by tailoring the microstructure for excellent comprehensive mechanical properties. (c) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

关键词:

Grain size Mechanical behavior Residual thermal stress Strain response WC hardmetal

作者机构:

  • [ 1 ] [Chen, Jinghong]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Minist Educ China, Beijing 100124, Peoples R China
  • [ 2 ] [Zhao, Chong]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Minist Educ China, Beijing 100124, Peoples R China
  • [ 3 ] [Lu, Hao]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Minist Educ China, Beijing 100124, Peoples R China
  • [ 4 ] [Liu, Xuemei]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Minist Educ China, Beijing 100124, Peoples R China
  • [ 5 ] [Wang, Haibin]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Minist Educ China, Beijing 100124, Peoples R China
  • [ 6 ] [Nie, Zuoren]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Minist Educ China, Beijing 100124, Peoples R China
  • [ 7 ] [Song, Xiaoyan]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Minist Educ China, Beijing 100124, Peoples R China
  • [ 8 ] [Li, Yanan]Gen Res Inst Nonferrous Met, Beijing 100088, Peoples R China

通讯作者信息:

  • 宋晓艳

    [Song, Xiaoyan]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Minist Educ China, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ACTA MATERIALIA

ISSN: 1359-6454

年份: 2021

卷: 221

9 . 4 0 0

JCR@2022

ESI学科: MATERIALS SCIENCE;

ESI高被引阀值:8

被引次数:

WoS核心集被引频次: 17

SCOPUS被引频次: 21

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:6711/2953920
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司