收录:
摘要:
A novel simultaneous partial nitrification, endogenous denitrification and phosphorus removal (SPNEDpr) system was operated for 213 days in a sequencing batch reactor to treat real domestic sewage. The nutrient removal was achieved under an operation mode of intermittent aeration at unequal intervals with low oxygen concentrations. Through optimizing intermittent aeration conditions, the removal efficiencies of total inorganic nitrogen (TIN), PO43-P and chemical oxygen demand (COD) reached 78.40%, 98.13% and 84%, respectively. Low oxygen (0.1-0.7 mg/L) and intermittent aeration effectively inhibited nitrite oxidation bacteria (NOB), maintaining stable partial nitrification with nitrite accumulation ratio of 96.45%. Notably, intermittent aeration promoted the formation of aerobic granular sludge, with the sludge particle size increasing from 217.2 +/- 5.3 to 351.8 +/- 4.8 mu m, thereby enhancing the TIN loss efficiency (81.3%). The predominant genus was Candidatus_Competibacter (11.6%), which stored COD as intracellular carbon source and performed the endogenous denitrification. The SPNEDpr process provided a highly efficient and economical method for treating urban sewage.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
CHEMOSPHERE
ISSN: 0045-6535
年份: 2021
卷: 285
8 . 8 0 0
JCR@2022
ESI学科: ENVIRONMENT/ECOLOGY;
ESI高被引阀值:94
JCR分区:1
归属院系: