• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Yanchen (Liu, Yanchen.) | Xu, Han (Xu, Han.) | Zheng, Peiping (Zheng, Peiping.) | Lin, Borong (Lin, Borong.) | Wu, Huijun (Wu, Huijun.) | Huang, Yu (Huang, Yu.) | Li, Ziwei (Li, Ziwei.)

收录:

EI Scopus SCIE

摘要:

Exploring new thermal preference prediction models or methods to precisely analyze occupants' unconscious feedback on the thermal environment without disturbing them is essential for increased building efficiency, comfort and productivity. In this study, we propose a novel method for developing a comfort model that uses occupant self-adjusting behavior to predict thermal preference. The model development draws from field data including thermal self-adaptive behaviors, environmental parameters, and thermal preferences collected from 34 occupants in a single multi-occupancy room in a research office in a university in south-east China, and it employs four machine learning algorithms including Support Vector Machine, Random Forest, K-Nearest Neighbor, and Decision Tree. The results indicate that there is a close relationship between thermal preference and thermal self-adaptive behavior. The highest prediction accuracy of thermal preference using a single set of input parameters is 0.81, obtained using self-adaptive behaviors. When the input parameters increase to four sets or more, the highest median accuracy of thermal preference prediction (0.85) does not change significantly. When it is difficult to obtain personal information (gender, height, and weight) and data on clothing thermal resistance, it is recommended to use a combination of three sets of parameters (self-adaptive behavior, indoor temperature and relative humidity (T/RH), and outdoor T/RH) or a combination of four sets of parameters (self-adaptive behavior, indoor T/RH, outdoor T/RH, and globe temperature) as the input parameters of the thermal preference prediction model based on Random Forest, which results in an expected prediction accuracy of 0.84 and 0.85, respectively.

关键词:

Thermal preference Self-adaptive behavior Machine learning Indoor environment

作者机构:

  • [ 1 ] [Liu, Yanchen]Guangzhou Univ, Coll Civil Engn, Guangzhou 510006, Peoples R China
  • [ 2 ] [Xu, Han]Guangzhou Univ, Coll Civil Engn, Guangzhou 510006, Peoples R China
  • [ 3 ] [Zheng, Peiping]Guangzhou Univ, Coll Civil Engn, Guangzhou 510006, Peoples R China
  • [ 4 ] [Wu, Huijun]Guangzhou Univ, Coll Civil Engn, Guangzhou 510006, Peoples R China
  • [ 5 ] [Huang, Yu]Guangzhou Univ, Coll Civil Engn, Guangzhou 510006, Peoples R China
  • [ 6 ] [Liu, Yanchen]Tsinghua Univ, Dept Bldg Sci, Beijing 100084, Peoples R China
  • [ 7 ] [Lin, Borong]Tsinghua Univ, Dept Bldg Sci, Beijing 100084, Peoples R China
  • [ 8 ] [Li, Ziwei]Beijing Univ Technol, Coll Architecture & Urban Planning, Beijing 100124, Peoples R China

通讯作者信息:

  • [Lin, Borong]Tsinghua Univ, Dept Bldg Sci, Beijing 100084, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

BUILDING AND ENVIRONMENT

ISSN: 0360-1323

年份: 2021

卷: 206

7 . 4 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:87

JCR分区:1

被引次数:

WoS核心集被引频次: 24

SCOPUS被引频次: 33

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:534/5055543
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司