• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Lin, Yinyi (Lin, Yinyi.) | Wan, Luoma (Wan, Luoma.) | Zhang, Hongsheng (Zhang, Hongsheng.) (学者:张红胜) | Wei, Shan (Wei, Shan.) | Ma, Peifeng (Ma, Peifeng.) | Li, Yu (Li, Yu.) | Zhao, Zhuoyi (Zhao, Zhuoyi.)

收录:

Scopus SCIE

摘要:

Road datasets are fundamental and imperative for traffic management and urban planning. Different high resolution optical remote sensing images are widely used for automatic road extraction but the results are usually limited to local scale and spectral confusions in barren and cropland, while accurate large-scale road extraction remains challenging. In this study, we incorporated medium resolution optical and SAR data, i.e., 10 meter resolution Sentinel-1 and Sentinel-2, for road extraction at a large scale and evaluated the contribution of different data sources. We developed a United U-Net (UU-Net) to fuse optical and SAR data for road extraction, which was trained and evaluated on a large-scale multisource road extraction dataset. The UU-Net achieved better accuracy than traditional deep convolutional networks with optical or SAR data alone, which obtained an average F1 of 0.5502 and an average IoU of 0.4021, outperforming in 160 out of 200 (80%) 0.5-by-0.5 degree evaluation grids. The results indicated that SAR contributes more to road extraction in barren land, while optical data contributes more to large slope areas. The road accuracy is positively related to elevation and urban percentage, which distributes higher in eastern China and lower in western. The road centerline from 10 m road showed comparable results with that from Open Street Map (OSM), indicating its promising applications to support large-scale urban transportation studies.

关键词:

U-Net SAR OSM Road Optical

作者机构:

  • [ 1 ] [Lin, Yinyi]Chinese Univ Hong Kong, Inst Space & Earth Informat Sci, Shatin, Hong Kong, Peoples R China
  • [ 2 ] [Wan, Luoma]Chinese Univ Hong Kong, Inst Space & Earth Informat Sci, Shatin, Hong Kong, Peoples R China
  • [ 3 ] [Ma, Peifeng]Chinese Univ Hong Kong, Inst Space & Earth Informat Sci, Shatin, Hong Kong, Peoples R China
  • [ 4 ] [Zhao, Zhuoyi]Chinese Univ Hong Kong, Inst Space & Earth Informat Sci, Shatin, Hong Kong, Peoples R China
  • [ 5 ] [Zhang, Hongsheng]Univ Hong Kong, Dept Geog, Pokfulam, Hong Kong, Peoples R China
  • [ 6 ] [Wei, Shan]Univ Hong Kong, Dept Geog, Pokfulam, Hong Kong, Peoples R China
  • [ 7 ] [Ma, Peifeng]Chinese Univ Hong Kong, Shenzhen Res Inst, Shenzhen, Peoples R China
  • [ 8 ] [Li, Yu]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

通讯作者信息:

  • 张红胜

    [Ma, Peifeng]Chinese Univ Hong Kong, Inst Space & Earth Informat Sci, Shatin, Hong Kong, Peoples R China;;[Zhang, Hongsheng]Univ Hong Kong, Dept Geog, Pokfulam, Hong Kong, Peoples R China;;[Ma, Peifeng]Chinese Univ Hong Kong, Shenzhen Res Inst, Shenzhen, Peoples R China

查看成果更多字段

相关关键词:

来源 :

INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION

ISSN: 1569-8432

年份: 2021

卷: 103

7 . 5 0 0

JCR@2022

ESI学科: GEOSCIENCES;

ESI高被引阀值:64

JCR分区:1

被引次数:

WoS核心集被引频次: 15

SCOPUS被引频次: 18

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:1152/4286829
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司