收录:
摘要:
Limited filamentous bulking (LFB) induced by low dissolved oxygen in activated sludge system is an effective energy saving process. However, starvation environment is liable to result in the unbalance between filaments and flocs, affecting the LFB system performance. The variations in nitrifying performance and properties of LFB sludge during 14 days of four starvation conditions (aerobic, alternating anaerobic/aerobic, anaerobic and anoxic) and their subsequent recovery were investigated in sequencing batch reactor (SBR) system. The results showed that the highest activity decay rates of ammonia-and nitrite-oxidizing bacteria (AOB and NOB) were observed under aerobic starvation condition, followed by anoxic, anaerobic, and alternating anaerobic/aerobic starvation conditions. In the reactivation period, the faster recovery of AOB activity and cell number, relative to NOB, particularly in aerobic case, led to temporary nitrite accumulation. Besides, the sludge settleability rapidly improved (SVI of-30 mL/g) due to filamentous bacteria suppression under aerobic starvation, while the filaments (e.g. Type 0092) overgrew (SVI of-250 mL/g) under anoxic starvation, triggering unexpected biomass loss and going against the nitrifying performance recovery of the system. In contrast, alternating anaerobic/aerobic and anaerobic starvations avoid pure aerobic or anoxic starvation condition, effectively maintaining the nitrifying performance and LFB state, and therefore are the best storage strategies for LFB sludge. (c) 2021 Elsevier B.V. All rights reserved.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
SCIENCE OF THE TOTAL ENVIRONMENT
ISSN: 0048-9697
年份: 2021
卷: 797
9 . 8 0 0
JCR@2022
ESI学科: ENVIRONMENT/ECOLOGY;
ESI高被引阀值:94
JCR分区:1
归属院系: