• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chen, Zhonglin (Chen, Zhonglin.) | Yang, Cuili (Yang, Cuili.) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞)

收录:

EI Scopus SCIE

摘要:

Long short-term memory (LSTM) neural network has been widely studied and applied in the real world. To obtain the LSTM neural network with better accuracy and more appropriate structure, the hybrid coding particle swarm optimization (HCPSO) algorithm is proposed. Firstly, the hybrid coding scheme is developed to represent the weights and structure of LSTM neural network, simultaneously. Then, the novel update mechanism is proposed to adjust the position of particles. Meanwhile, the discrete update strategy (DUS) and adaptive nonlinear moderate random search strategy (ANMRS) are proposed to enhance the convergence and global search capability of HCPSO, respectively. Finally, the effectiveness of HCPSO is demonstrated by multiple numerical examples. The experiment results show that the proposed HCPSO algorithm is more competitive in optimizing LSTM neural networks than other algorithms.

关键词:

LSTM Update mechanism Convergence HCPSO Coding scheme Global search capability

作者机构:

  • [ 1 ] [Chen, Zhonglin]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 2 ] [Yang, Cuili]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 3 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

通讯作者信息:

  • 乔俊飞

    [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

JOURNAL OF SUPERCOMPUTING

ISSN: 0920-8542

年份: 2021

期: 5

卷: 78

页码: 7227-7259

3 . 3 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:87

JCR分区:2

被引次数:

WoS核心集被引频次: 12

SCOPUS被引频次: 13

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:109/3911111
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司