• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Lei, Fei (Lei, Fei.) | Ou, Jiahao (Ou, Jiahao.) | Wang, Xueli (Wang, Xueli.) | Zhu, Hengyu (Zhu, Hengyu.)

收录:

Scopus SCIE

摘要:

The identification of pollutant source release history in rivers is important for emergency response of pollution accidents and formulating remediation strategies. Space-time radial basis collocation method (RBCM), as a meshless method with strong applicability, can directly estimate the release history from the concentration data measured at downstream observation sites. However, the uncertainty of specific parameters in space-time RBCM is the main factor affecting the accuracy of estimation. Therefore, a way to solve the parameters efficiently and accurately is essential. For this purpose, a new model which combines space-time RBCM and differential evolution algorithm (DEA) is established to identify the source release history. First of all, efficient parameter optimizer DEA is introduced to search the parameters that affect the estimation accuracy of space-time RBCM. Then, a new loss function considering the imbalance configuration of RBCM nodes is designed to ensure the rationality of the parameters obtained by DEA. The results of numerical cases and real field case show that the proposed method can accurately estimate the real release history with low time consumption. It is also demonstrated that DEA is more efficient than k-fold cross-validation in searching the optimal parameters for space-time RBCM, and the parameters obtained from the new loss function can make the estimated release history more precise.

关键词:

Loss function Pollutant release history identification Meshless method Radial basis collocation method Surface water Differential evolution algorithm

作者机构:

  • [ 1 ] [Lei, Fei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Ou, Jiahao]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Zhu, Hengyu]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Wang, Xueli]Beijing Univ Technol, Fac Sci, Beijing 100124, Peoples R China

通讯作者信息:

  • [Lei, Fei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH

ISSN: 0944-1344

年份: 2021

期: 13

卷: 29

页码: 19847-19859

5 . 8 0 0

JCR@2022

ESI学科: ENVIRONMENT/ECOLOGY;

ESI高被引阀值:94

JCR分区:2

被引次数:

WoS核心集被引频次: 3

SCOPUS被引频次: 3

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:2262/4276078
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司