• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Hu, Yongli (Hu, Yongli.) (学者:胡永利) | Song, Zuolong (Song, Zuolong.) | Wang, Boyue (Wang, Boyue.) | Gao, Junbin (Gao, Junbin.) | Sun, Yanfeng (Sun, Yanfeng.) (学者:孙艳丰) | Yin, Baocai (Yin, Baocai.) (学者:尹宝才)

收录:

SCIE

摘要:

With the popularity of cameras and sensors, massive data are captured from various view angles or modalities, which provide abundant complementary information and also bring great challenges for traditional clustering methods. In this article, we propose a novel Adaptive K-Multiple-Means for multi-view clustering method (AKM(3)C). Unlike traditional multi-view K-means methods by grouping samples into C clusters each with a cluster center in every view, the proposed AKM(3)C employs M (M>C) sub-cluster centers in each view to reveal the sub-cluster structure in the multi-view data thus enhances the clustering performance. Additionally, to distinguish the importance of different views, instead of using empirical weights, AKM(3)C exploits the multi-view combination weights strategy to assign a weight to each view automatically and thus fuses the complementary information of different views properly to get an optimally shared bipartite graph, on which the Laplacian rank constraint is executed and the final clusters are obtained by directly partitioning. An efficient optimization algorithm proposed with complexity and convergence analysis is used to solve the proposed AKM(3)C method. The extensive experimental results on eight public datasets show that the proposed AKM(3)C performs better than state-of-the-art multi-view clustering methods. The code can be downloaded at https://drive.google.com/file/d/1CQ0royrYxKFJdNLnbBQSbDrohtfH71di/view?usp=sharing.

关键词:

Adaptation models Bipartite graph Clustering methods Fuses Kernel K-means Laplacian rank constraint Matrix decomposition multiple means Multi-view clustering Tensors

作者机构:

  • [ 1 ] [Hu, Yongli]Beijing Univ Technol, Fac Informat Technol, Beijing Artificial Intelligence Inst, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 2 ] [Song, Zuolong]Beijing Univ Technol, Fac Informat Technol, Beijing Artificial Intelligence Inst, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Boyue]Beijing Univ Technol, Fac Informat Technol, Beijing Artificial Intelligence Inst, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 4 ] [Sun, Yanfeng]Beijing Univ Technol, Fac Informat Technol, Beijing Artificial Intelligence Inst, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 5 ] [Yin, Baocai]Beijing Univ Technol, Fac Informat Technol, Beijing Artificial Intelligence Inst, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 6 ] [Gao, Junbin]Univ Sydney, Univ Sydney Business Sch, Discipline Business Analyt, Camperdown, NSW 2006, Australia

通讯作者信息:

  • [Wang, Boyue]Beijing Univ Technol, Fac Informat Technol, Beijing Artificial Intelligence Inst, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY

ISSN: 1051-8215

年份: 2021

期: 11

卷: 31

页码: 4214-4226

8 . 4 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:9

被引次数:

WoS核心集被引频次: 21

SCOPUS被引频次: 20

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:201/3609209
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司