• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang Liyuan (Wang Liyuan.) | Zhang Jing (Zhang Jing.) (学者:张菁) | Yao Jiacheng (Yao Jiacheng.) | Zhuo Li (Zhuo Li.)

收录:

EI Scopus SCIE CSCD

摘要:

Although deep learning has reached a higher accuracy for video content analysis, it is not satisfied with practical application demands of porn streamer recognition in live video because of multiple parameters, complex structures of deep network model. In order to improve the recognition efficiency of porn streamer in live video, a deep network model compression method based on multimodal knowledge distillation is proposed. First, the teacher model is trained with visual-speech deep network to obtain the corresponding porn video prediction score. Second, a lightweight student model constructed with MobileNetV2 and Xception transfers the knowledge from the teacher model by using multimodal knowledge distillation strategy. Finally, porn streamer in live video is recognized by combining the lightweight student model of visualspeech network with the bullet screen text recognition network. Experimental results demonstrate that the proposed method can effectively drop the computation cost and improve the recognition speed under the proper accuracy.

关键词:

Lightweight student model Knowledge distillation Live video Multimodal Porn streamer recognition

作者机构:

  • [ 1 ] [Wang Liyuan]Beijing Univ Technol, Fac Informat, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang Jing]Beijing Univ Technol, Fac Informat, Beijing 100124, Peoples R China
  • [ 3 ] [Yao Jiacheng]Beijing Univ Technol, Fac Informat, Beijing 100124, Peoples R China
  • [ 4 ] [Zhuo Li]Beijing Univ Technol, Fac Informat, Beijing 100124, Peoples R China
  • [ 5 ] [Wang Liyuan]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 6 ] [Zhang Jing]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 7 ] [Yao Jiacheng]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 8 ] [Zhuo Li]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

通讯作者信息:

  • 张菁

    [Zhang Jing]Beijing Univ Technol, Fac Informat, Beijing 100124, Peoples R China;;[Zhang Jing]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

CHINESE JOURNAL OF ELECTRONICS

ISSN: 1022-4653

年份: 2021

期: 6

卷: 30

页码: 1096-1102

1 . 2 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:87

JCR分区:4

被引次数:

WoS核心集被引频次: 3

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:37/3930990
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司