• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Halim, Zahid (Halim, Zahid.) | Yousaf, Muhammad Nadeem (Yousaf, Muhammad Nadeem.) | Waqas, Muhammad (Waqas, Muhammad.) | Sulaiman, Muhammad (Sulaiman, Muhammad.) | Abbas, Ghulam (Abbas, Ghulam.) | Hussain, Masroor (Hussain, Masroor.) | Ahmad, Iftekhar (Ahmad, Iftekhar.) | Hanif, Muhammad (Hanif, Muhammad.)

收录:

EI Scopus SCIE

摘要:

Availability of suitable and validated data is a key issue in multiple domains for imple-menting machine learning methods. Higher data dimensionality has adverse effects on the learning algorithm's performance. This work aims to design a method that preserves most of the unique information related to the data with minimum number of features. Address-ing the feature selection problem in the domain of network security and intrusion detection, this work contributes an enhanced Genetic Algorithm (GA)-based feature selection method, named as GA-based Feature Selection (GbFS), to increase the classifiers' accuracy. Securing a network from the cyber-attacks is a critical task and needs to be strengthened. Machine learning, due to its proven results, is widely used in developing firewalls and Intrusion Detec-tion Systems (IDSs) to identify new kinds of attacks. Utilizing machine learning algorithms, IDSs are able to detect the intruder by analyzing the network traffic passing through it. This work presents parameter tuning for the GA-based feature selection along with a novel fit-ness function. The present work develops an enhanced GA-based feature selection method which is tested over three benchmark network traffic datasets, namely, CIRA-CIC-DOHBrw-2020, UNSW-NB15, and Bot-IoT. A comparison is also performed with the standard feature selection methods. Results show that the accuracies improve using GbFS by achieving a maximum accuracy of 99.80%. (c) 2021 Elsevier Ltd. All rights reserved.

关键词:

Feature selection Machine learning Intrusion detection Data analysis Genetic algorithm

作者机构:

  • [ 1 ] [Halim, Zahid]Ghulam Ishaq Khan Inst Engn Sci & Technol, Fac Comp Sci & Engn, Machine Intelligence Res Grp MInG, Topi 23460, Pakistan
  • [ 2 ] [Yousaf, Muhammad Nadeem]Ghulam Ishaq Khan Inst Engn Sci & Technol, Fac Comp Sci & Engn, Machine Intelligence Res Grp MInG, Topi 23460, Pakistan
  • [ 3 ] [Sulaiman, Muhammad]Ghulam Ishaq Khan Inst Engn Sci & Technol, Fac Comp Sci & Engn, Machine Intelligence Res Grp MInG, Topi 23460, Pakistan
  • [ 4 ] [Hussain, Masroor]Ghulam Ishaq Khan Inst Engn Sci & Technol, Fac Comp Sci & Engn, Machine Intelligence Res Grp MInG, Topi 23460, Pakistan
  • [ 5 ] [Hanif, Muhammad]Ghulam Ishaq Khan Inst Engn Sci & Technol, Fac Comp Sci & Engn, Machine Intelligence Res Grp MInG, Topi 23460, Pakistan
  • [ 6 ] [Waqas, Muhammad]Ghulam Ishaq Khan Inst Engn Sci & Technol, Fac Comp Sci & Engn, Telecommun & Networking TeleCoN Res Lab, Topi 23460, Pakistan
  • [ 7 ] [Abbas, Ghulam]Ghulam Ishaq Khan Inst Engn Sci & Technol, Fac Comp Sci & Engn, Telecommun & Networking TeleCoN Res Lab, Topi 23460, Pakistan
  • [ 8 ] [Ahmad, Iftekhar]Edith Cowan Univ, Sch Engn, Joondalup, WA 6027, Australia
  • [ 9 ] [Waqas, Muhammad]Beijing Univ Technol, Fac Informat Technol, Engn Res Ctr Intelligent Percept & Autonomous Con, Beijing 100124, Peoples R China
  • [ 10 ] [Sulaiman, Muhammad]Capital Univ Sci & Technol, Dept Comp Sci, Islamabad, Pakistan

通讯作者信息:

  • [Halim, Zahid]Ghulam Ishaq Khan Inst Engn Sci & Technol, Fac Comp Sci & Engn, Machine Intelligence Res Grp MInG, Topi 23460, Pakistan

查看成果更多字段

相关关键词:

来源 :

COMPUTERS & SECURITY

ISSN: 0167-4048

年份: 2021

卷: 110

5 . 6 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:87

JCR分区:2

被引次数:

WoS核心集被引频次: 53

SCOPUS被引频次: 84

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:187/3899800
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司